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SUMMARY

As a robust feature extraction method, deep learning has made
significant progress in attenuating noise from seismic datasets.
One critical assumption of deep learning for prediction is that
test and training data should arise from the same distribution.
Poststack data from a given survey can approximately meet
this assumption because of subsurface structure similarities.
Also, poststack data has a high signal-to-noise ratio (SNR)
and a moderate amplitude variation, which makes the net-
work training relatively easy. Therefore, denoising poststack
seismic data with deep learning techniques appears to be a
solved problem. However, noise is often prevalent in prestack
data. The noticeable amplitude decay and significant wave-
form changes of reflections make network training unstable.
More than that, the strong near-surface scattered noise on land
data, which often overlaps with valuable signals in the t − x
domain and f −k domain, poses a severe challenge to the con-
ventional suppression strategy in common shot and common
receiver gathers. Supervised deep learning methods, which re-
quire access to realistic learning samples, have failed to make
a breakthrough on prestack seismic data denoising. Some un-
supervised deep learning methods have made progress in ar-
eas with weak scattered noise, but further work is required to
meet the industry’s requirements. To deal with the problem
above and make deep learning more generalized and tractable
for processing prestack denoising, we propose to train a de-
noising network on the offset vector tile (OVT) domain. OVT
is a particular prestack seismic gather type that can faithfully
represent a continuous wavefield; hence, it is an excellent do-
main to extract seismic data features. We use a 3D survey
containing 1260 OVT volumes to illustrate the validity of the
proposed methods. Only two OVT volumes with the same az-
imuth value are used to train the network, and the rest of the
1258 OVT volumes are adopted as test data. The results show
that our method can effectively attenuate random and scattered
noise. Moreover, our approach ameliorates the poor denoising
performance on the boundary of OVT gathers compared to the
conventional method used to construct training samples. It is
worth mentioning that our calculation time for an OVT volume
(200× 200× 3001) is only about 6 minutes, which is about
one-tenth of the comparison conventional method. This work
focuses on the following aspects: We study the suppression
of intense prestack scattered noise based on deep learning, we
also examine which is the best domain to perform deep learn-
ing denoising.

INTRODUCTION

Improving noise removal in seismic data processing leads to
a more confident interpretation. In the past, researchers in-
troduced a wide range of methods for seismic noise attenua-
tion. Each category of these methods utilizes a particular prior
knowledge of the physical where the signal is represented. Typ-

ically, filtering methods, based on the predictable property of
the seismic signal, are most frequently used, including f-k fil-
tering (Embree et al., 1963; Treitel et al., 1967), f-x decon-
volution (Gulunay, 1986), and multichannel singular spectrum
analysis (Oropeza and Sacchi, 2011). A further category of
seismic denoising techniques considers the the low-rank prop-
erty, including low-rank factorization (Trickett, 2003) and nu-
clear norm minimization (Kreimer and Sacchi, 2012). An im-
portant category of seismic denoising techniques uses the sig-
nal or noise sparsity in a certain transform domain, such as
wavelet transform domain (Deighan and Watts, 1997; Chen
et al., 2017) and curvelet transform (Naghizadeh and Sacchi,
2018).

Techniques also exist in attenuating seismic noise in the OVT
domain. OVT technology applies to wide-azimuth seismic ex-
ploration (Vermeer, 2007). Each OVT is built from a limited
range of shots along the shot line and a limited range of re-
ceivers along the receiver line, thereby having a limited range
of offset and azimuth. Hence, spatial continuity of prestack
wavefield improves, which is beneficial to noise attenuation.
Li et al. (2015) applied volume τ − p transform to denoise
a low SNR seismic data on the OVT domain. Duan et al.
(2016) combined both 5D interpolation and migration in the
OVT domain and showed that footprint can be effectively sup-
pressed from the source. Ling and Hu (2019) sort data into
the OVT domain and found that such OVT gathers are suitable
for internal multiples attenuation. Sun et al. (2019) utilized
curvelet transform to denoise OVT gathers with a low SNR.
Li et al. (2019) sorted data into OVT and utilized a unified
learning-based framework to improve conventional denoising
methods. Performing OVT processing and preserving azimuth
information requires handling massively increased data vol-
umes, putting forward high processing speed requirements.

In recent years, we have witnessed a growing academic inter-
est in deep learning. Unlike conventional methods, deep learn-
ing automatically learns feature extraction ability from training
data instead of adopting handcrafted filters, which mainly de-
pends on a priori knowledge of designers and fails to consider
the benefits of big data. The more significant part of the litera-
ture on noise attenuation with deep learning focuses on the su-
pervised learning method. Zhang et al. (2010) first applied BP
neural network to seismic random noise reduction. Song et al.
(2020) used a deep convolutional autoencoder neural network
to eliminate random seismic noise. Liu et al. (2020) proposed
a 3D-DnCNN to denoise poststack seismic data and reported
that deep learning can outperform the conventional method
in suppressing arc-like imaging noise. Sun et al. (2020) em-
ployed a customized network with element-wise summation
to marine seismic interference noise and pointed out that its
processing speed is significantly faster than any existing in-
dustry denoising algorithm. Overall, these studies highlight
deep learning results with powerful feature extraction ability
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and super fast computing speed due to easy access to GPU.

We propose a new prestack seismic noise attenuation method
combining deep learning with the OVT partitioning method.
In learning theory, the training and test sets are assumed to be
drawn from the same probability distribution. For poststack
noise attenuation, this assumption can be followed by train-
ing a subvolume generated from the whole survey because
the subsurface structures are similar. However, the SNR of
prestack data is much lower, and the amplitude decays due
to wave propagation are large, making distribution changes.
Deep learning often suffers severe performance degradation
when the distribution of test data mismatches the training
data. Therefore, deep learning for prestack data denoising is
rarely applied on a large scale in practical applications, signif-
icantly when contaminated by strong scattered noise. To make
deep learning more generalized in prestack denoising, we sort
the seismic data into OVT before training the network. The
prestack wavefield of OVT is smooth and continuous. More-
over, there is minor spatial and temple amplitude variation in
OVT. The sound characteristics of OVT domain data offer a
favourable data foundation for network learning. In return, the
massive data of OVT can give full play to the advantages of
deep learning computing efficiency.

METHOD

Model formulation

Noise attenuation, which recovers useful signals x ∈ X = Rm

from noisy data y ∈ Y =Rm, is an important subfield of statis-
tical data analysis. We model the noisy prestack seismic data

y = x+n, (1)

where y is contaminated with scattered and random noise n.
The supervised deep learning approaches have been developed
for suppressing seismic noise. Deep neural networks inter-
pret the image denoising problems as a regression problem and
learn to map the noisy seismic data to clean reflections. This
happens by training a convolutional neural network (CNN)
with a large number of training sample pairs containing noisy
input and clean labels

(yi,xi)∼ (Y,X) = (X+N,X) , i = 1, . . . ,N (2)

where Y,X, and N are random variables taking values in Y ,
X , and N , respectively. By network training, deep learning
aim to find the regression function

h∗ = argmin
h

EX,N {L(h(X+N),X)} , (3)

which is an expected risk minimization task. Here, we chose
the most commonly used loss function, that is, pixel-wise mean
square error

L(h(X+N),X) = ‖h(X+N)−X‖2
2. (4)

Since joint distribution function P(Y,X) is unknown, equation
(4) is usually intractable. To circumvent it, the expectation is
estimated by the empirical risk, which is the sample mean over
the training dataset. The empirical risk minimization task is

minimized over the CNN parameterized mappings fθ :Y→X
with parameters θ . The network training is then equivalent to
find the optimal parameters

θ∗ = argmin
θ

N∑

i=1

‖ fθ (yi)−xi‖2
2 , (5)

which minimizes the loss on the training sample pairs. After
training, the network fθ ∗ is applied to unseen noisy seismic
data to obtain useful signals. It is worth noting that the train-
ing data and test data should independent and identically dis-
tributed. Otherwise, the test data is not reliable, and the dataset
bias leads to incorrect predictions.

Training samples

Denoising prestack seismic data faces more challenges com-
pared to denoise poststack data. It has to confront the ampli-
tude decay and waveform distortion due to wave-propagation
effects. Moreover, prestack seismic data are typically embed-
ded with a lot of noise. A high degree of scattered noise masks
the primary reflection data and is very difficult to remove with-
out damaging reflections. There are many kinds of prestack
seismic data, such as common shot , common receiver, and
common midpoint gathers. Good selection of data domain can
reduce the adverse impact mentioned above. To make the net-
work easier to learn the distribution of valuable signals, we
choose the appropriate data type, namely OVT. OVT is single-
fold coverage of the entire survey area with similar offsets and
azimuths, thereby reducing the spatial discontinuity and laying
the data foundation for network learning.

Deep learning needs a large training dataset containing noise-
free data, which are not available in practice. Instead, we use
the denoising results of a conventional method and approxi-
mately consider them as the training labels. After sorting the
data into OVT, a noise attenuation method based on 3-D con-
tinuous wavelet transform (3D-CWT) is applied to denoise the
prestack seismic data (Wang et al., 2020). 3D-CWT can make
full use of the spatial structure information of seismic data, so
it is more suitable for processing 3D seismic data. The defini-
tion of 3D-CWT is

CWT ( f ;b,a,ρ,ϕ) =
〈

f ,ψb,a,(ρ,ϕ)

〉

=
1
a3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f (m)ψ∗

(
1
a

ℜρ,ϕ (m−b)
)

dxdydz

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f̂ (k)ψ̂∗

(
aℜρ,ϕ (k)

)
e jbkdkxdkydkz (6)

where a is the dilation parameter, m = (x,y,z)T and k =
(kx,ky,kz)

T are 3D vectors, b = (bx,by,bz)
T is a 3D vector

of translation operation, and (ρ,ϕ) is the rotation parameter.
ℜρ,ϕ is a rotation operation and indicates the rotation of a vec-
tor by angle ρ along the dip direction and angel ϕ along the
azimuth direction. f̂ (k) and ψ̂(k) is wavenumber domain of
f (x) and ψ(x) , respectively. ψ(x) is 3D-CWT and here we
choose 3D Morlet wavelet because it has orientation-selective
properties.

CWT is computationally intensive, requiring to divide the space
into very fine-grained grids to ensure that wavelets could ex-
tract the complete signal. To speed up and make 3D-CWT
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more efficient, we use a fast 3D-CWT with fast Fourier trans-
form to get noisy seismic data coefficients. For each parame-
ter (a,ρ,φ ,b), we calculate the wavelet subband and apply a
threshold filter to the subband. Finally, all filtered subbands
are utilized to reconstruct the useful signals x̂. In this way, we
build N training sample pairs {(yi, x̂i)}i=1

N and then feed them
to the network.

Network architecture

Our network architecture is a feedforward neural network, as
shown in Figure 1. The input layer contains a convolution op-
eration followed by an activation function to increase the non-
linearity of the neural network. ReLU is the most used acti-
vation function because a model that uses it is easier to train
and often achieves better practice performance. Hence, we set
ReLU as the default activation function. In the middle is 15
hidden layers. Unlike the input layer, the batch normaliza-
tion (BN) is added before each activation function to acceler-
ate deep network training. The last layer is the convolutional
output layer. We use the same padding to produce an output
of the same size as the input. It is worthwhile to mention that
all the convolution operations are 3D to fully utilize the spatial
structure information of seismic data.

Figure 1: The network architecture used in this abstract

The biggest difference in our network architecture is that we
use the strategy of direct mapping instead of residual learn-
ing, which was frequently used in previous networks. Indeed,
Residual learning is famous for removing additive white Gaus-
sian noise. This is partly because it learns a map from noisy
data to noise where the noise has a fixed probability distribu-
tion. The learning target is stable, so it has achieved good per-
formance in noise removal. However, the amplitude changes
in prestack seismic data, and so does noise distribution. Thus,
learning a map to noise may not be a good choice. At the
same time, we notice that the valuable signals in the OVT do-
main are spatially continuous, and the distributions are similar.
More importantly, the underground structures of different OVT
volumes are the same. Therefore, in denoising in the OVT do-
main, it is easier to learn a mapping towards proper signals
than noise, so we choose the direct mapping strategy.

EXAMPLES

We use a 3D wide azimuth survey in Western China to illus-
trate the proposed method and its validity. Figure 2 displays
the offset-azimuth locations of OVT volumes in polar coordi-

training
testing

180

135

90

45

0

315

270

225

EW

N

S

Offset

Azimuth

Stacking

Figure 2: Locations of OVT volumes in offset-azimuth polar
coordinates.

nates. We see that this survey has 1260 OVT volumes, com-
posed of 35 offsets by 36 azimuths. As indicated by the red
points in Figure 2, two OVT volumes with the same azimuth
are filtered by 3D CWT and then fed to the network for train-
ing. After that, the well-trained network is applied to denoise
the whole survey in the OVT domain.

Figure 3a plots a noisy inline section of OVT volumes, which
is severely contaminated with random noise and near-surface
scattered noise. Figure 3b and Figure 3c are the denoised data
and removed noise by 3D CWT, respectively. Despite the low
SNR of original data, the coherent noise in the denoised data
is significantly weakened, and the reflections become much
clearer. This proves that the OVT domain is suitable for noise
suppression because of a continuous wavefield. Moreover, It
can be seen from Figure 3c that the noise distribution, espe-
cially the near-surface scattered noise, is nonuniform. In this
case, using the network to learn a map to noise should not be
a good choice. Figure 3d and Figure 3e are our results, which
utilize the network to learn a direct mapping to useful signals.
From the figures above, we can see that the SNR has been
significantly improved, and no obvious damage to the useful
signals can be found. Closer inspection of crossline results
in Figure 4 and time slice results in Figure 5 can draw the
same conclusion. The most surprising aspect of our method
is that the network can learn the distribution of useful signals
by learning minimal amounts of OVT volumes, and then it can
suppress the noise of all other OVT volumes.

To further compare the denoising results, we stack the OVT
volumes with the stack range shown in Figure 2. Figure 6a
displays the stack results without noise attenuation, and a lot
of noise can still be observed. Both stack results of 3D CWT
and our proposed methods can enhance the weak signal and
obtain clear events. Figure 7 reveal that our approach is similar
to 3D CWT in general, which proves that our learning strategy
is successful. Besides, our boundary is better processed.

Finally, we sort the data used for stacking into common mid-
point gathers. The scattered noise in Figure 8a severely masks
the primary reflections. We see that the denoising results in
Figure 8 also accord with earlier observations, which shows
that our method has successfully removed the scattered noise.
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Figure 3: Inline section results of a OVT volume. (a) noisy.
(b) and (c) are results by 3D CWT. (d) and (e) are our reuslts.

Figure 4: Crossline section results of a OVT volume. (a) noisy.
(b) and (c) are results by 3D CWT. (d) and (e) are our reuslts.

Figure 5: Time slice results of a OVT volume. (a) noisy. (b)
and (c) are results by 3D CWT. (d) and (e) are our reuslts.

CONCLUSION

We propose a prestack denoising method by combining the
merits of deep learning and OVT partitioning techniques. The
wavefield continuity in the OVT domain provides good learn-
ing conditions for the network. The field results demonstrate
that only a minimal number of OVT volumes can make the net-
work obtain the ability to suppress the whole survey’s noise.
This is very promising in practice because the prestack data

Figure 6: Inline section results of stacked data. (a) noisy. (b)
and (c) are results by 3D CWT. (d) and (e) are our reuslts.

Figure 7: Time slice results of stacked data. (a) noisy. (b) and
(c) are results by 3D CWT. (d) and (e) are our reuslts.

Figure 8: Results of common mid-point gathers. (a) noisy. (b)
and (c) are results by 3D CWT. (d) and (e) are our reuslts.

is massive, and deep learning can save ten times the process-
ing time compared with the conventional method used in this
abstract.
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