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Abstract—With the improvement of computing power and
the rapid development of deep learning, deep-learning-based
methods are widely used in the field of seismic data noise
suppression. Supervised learning has proven to be effective but
its performance largely relies on noise-free data labeling, which
is often unavailable or an expensive process. Therefore, as a form
of unsupervised learning, self-supervised learning emerged to
overcome this difficulty, with its labels coming from the training
dataset itself. In this letter, we propose a self-supervised learning
method that requires only raw seismic data to train the model
by using the Noise2Noise strategy, which takes advantage of the
unpredictability of noises to regress from noisy data to clean
data. Our method aims at improving the noise suppression effect
for common-reflection-point (CRP) gathers. By comparing with
conventional methods, both synthetic and field data show that the
proposed framework is not only effective in suppressing random
noise, but also remains effective for coherent noise.

Index Terms—Convolutional neural network, self-supervised
learning, common-reflection-point gathers, random noise sup-
pression, coherent noise suppression

I. INTRODUCTION

THE noise suppression in prestack seismic data is a classic
problem and has always been a big challenge when pro-

cessing seismic data in practice. In general, we can divide the
seismic data noise suppression methods into two categories,
conventional methods and deep-learning-based methods.

The conventional methods can be further divided into three
main branches. The first branch is predictive filtering, such as
f − x [1] predictive filterings, which are based on the spatial
predictability of the useful part of the signal in the frequency
domain and the unpredictability of the noise. The second
important branch is the noise suppression methods based
on mathematical transforms. The transforms used in these
methods are mainly wavelet transforms [2], ridgelet transforms
[3], curvelet transforms [4] and other multi-scale transforms
with local focusing properties. These methods usually use
the mathematical transform to transform the data into the
transform domain, then use the threshold function to sup-
press the transform coefficients, and finally obtain the noise-
suppressed data with the corresponding inverse transform.
The third branch is based on sparse representation of seismic
data, which requires that seismic data can be represented as
a linear combination of atoms from a dictionary [5] so that
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we can take advantage of the sparsity difference between the
useful signal and noise to discriminate them. The conventional
methods mentioned above have been proven to be effective in
practice, but they share some common weaknesses, that is,
their performance heavily relies on hand-crafted priors and
appropriate parameter fine-tuning. In addition, the algorithms
of these conventional methods are relatively time-consuming
and considered inefficient when processing massive field data.

In recent years, the rapid development of deep learning,
especially convolutional neural network, has given rise to
many applications in seismic data noise suppression. As an
efficient end-to-end method, convolutional neural network not
only further improves the noise suppression effect, but also
makes up for the weaknesses of conventional methods. The
DnCNN [6] was initially used by Yu et al. [7] for noise
suppression of seismic data, and the experiment proved that
the DnCNN of 17 layers was sufficient for seismic data. Liu
et al. [8] extended the DnCNN network to three dimensions
(3D-DnCNN) to take advantage of the strong correlation of
seismic data in three dimensions, and obtained a good effect
of prestack and poststack data noise suppression. Li et al.
[9] used the supervised residual learning CNN network to
suppress the ground rolls. In 2022, Li et al. [10] used CNN
to conduct super-resolution and noise suppression of seismic
data. All the above belong to the research and application of
supervised learning in seismic noise suppression. However, the
main challenge with supervised learning is the requirement
for noise-free data as labels. When dealing with field data,
this is an expensive process or not even always available.
Simultaneously, generalization performance is also a contin-
uously discussed problem. Poor generalization performance
of a trained model will make the improvement of computing
efficiency in vain. In contrast, unsupervised learning eliminates
the need for noise-free data labels while providing stronger
generalization performance. In 2020, Liu et al. [11] applied
the generator convolutional neural network(GCN) to prestack
seismic data and obtained great results. As an important branch
of unsupervised learning, self-supervised learning generates
labels for training from inside the training dataset. Recently,
the research of Sun et al. [12] used self-supervised learning
method combined with transfer learning and well suppressed
random noise in both prestack and poststack seismic data.
Moreover, Noise2Noise [13] is a widely referenced strategy
in self-supervised learning, which implies that, without over-
fitting, the network can merely recover useful signals when
the useful signals of the input and labels are strongly coherent
and the noises are independent. Based on the Noise2Noise
strategy, Shao et al. [14] proposed a training data generation
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strategy to suppress random noise.
In this letter, inspired by the Noise2Noise strategy and

the characteristics of CRP gathers, we propose a promising
paradigm, which is effective not only for random noise but
also for coherent noise. To be more concrete, after processing
by means of normal moveout (NMO) correction, the common
reflection point gathers have a horizontal events in the space-
time domain, because each point of the same time theoretically
represents the reflection from the same point underground,
which means that the signals in the horizontal direction of
the time-space domain are highly self-similar. That character-
istic of CRP gathers perfectly meets the requirements of the
Noise2Noise strategy and allows us to accomplish our noise
suppression task in an easier way, which means we don’t
need clean labels any more. On this basis, we propose an
effective framework in terms of training dataset construction
and model training. In section II, we briefly introduce the
model formulation and the proposed framework. Section III
elaborate on the implementation details and show the results
of the proposed method on synthetic data and field data.
Eventually, we conclude in section IV.

II. METHOD

A. Model Formulation

Seismic data can be modeled as a superposition of useful
signals and noise.

x = y + n (1)

where x denotes the raw seismic data, y denotes the useful
signal and n denotes the noises, including random noises and
coherent noises. Supervised learning aims to find the best
mapping between the raw data and the useful signal, which can
be written as y ≈ fθ(x), through a large amount of training
with the model so that we can define the optimization objective
as follows :

arg min
θ

∑
{L(fθ(x), y)}. (2)

Before further formulation, we briefly review the basic
hypotheses of the Noise2Noise [13] strategy.

1) The input and label for training have strongly coherent
useful signal.

2) The input and label for training have independent noise.
When the above hypothesis is satisfied, the optimization
objective based on the Noise2Noise strategy can be rewritten
as follows :

arg min
θ

∑
{L(fθ(x1), x2)}. (3)

with x1 = y + n1 and x2 = y + n2.
Although the optimization objective is changed, our map-

ping objective remains the same, which is y = fθ(x), because
of the hypothesis that the noise between the samples is inde-
pendent of each other. Therefore, fθ(x1) can be represented
with ŷ. To make clear the effect of noise in the labels on the
optimization process, taking L2Loss as an example, we can
formulate the loss function as

L2(ŷ, y + n2) =
1

N

N∑
n=1

[y(n) + n2(n)− ŷ(n)]2

=
1

N

N∑
n=1

{[y(n)− ŷ(n)]2

+ 2× n2(n)× [y(n)− ŷ(n)] + n2(n)
2}

= L2(ŷ, y) + σ(n2)
2 +

2

N

N∑
n=1

n2(n)[y(n)− ŷ(n)]

(4)

The process of model training is the process of applying
gradient descent method to the loss function in order to
find the minimum. In general, we can divide noise into two
categories, Gaussian random noise and other noise represented
by coherent noise and non-zero random noise.

For Gaussian random noise, in the above equation, the ran-
dom noise and useful signal in the third term are independent
of each other with the mean value equal to 0. Therefore, when
N is large enough, this term tends to be 0. The second term
is the variance of noise, which is independent of the model
parameter θ. The first remaining term is the loss function in
the supervised learning case.

For other noises, coherent noise and non-zero random noise
are not necessarily independent. In order to solve it, we return
to the Noise2Noise denoising strategy, the core principle of
which is to make use of the independence of Gaussian random
noise in space-time domain so that its features can not be
captured by CNN. When dealing with coherent noise and
non-zero random noise, by randomly sliding sampling on the
horizontal events as input or label, we can still make coherent
noises or non-zero random noises irrelevant so that those
features cannot be captured by CNN, which is an extension
of the the Noise2Noise principle and the sliding sampling
method will be detailed in the section II-B. Therefore, the
noise will not affect the parameter optimization during the
gradient descent, which means that the proposed strategy is
theoretically feasible and reliable.

B. Proposed Framework

In the subsection II-A, we verify the feasibility of the
Noise2Noise strategy through the formulation of the loss
function and the optimization objective. However, in order
to use Noise2Noise strategy, a framework that satisfies two
hypotheses is indispensable, which is the key point of our
method. On the one hand, the input and label should have
strongly coherent useful signal, which is well satisfied in the
case of the CRP gathers because of the horizontal events.
On the other hand, the noise of input and label should be
irrelevant, which is obvious for random noise, but for coherent
noise, when we can eliminate the correlation of coherent noise
between samples by random sampling. In the algorithm 1, we
give the detailed process of the algorithm implementation.
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Fig. 1. Schematic of the proposed denoising framework

Algorithm 1 Construction of training data set by sliding
sampling
Data: K CRP gathers with size [P, Q]; [L,W], size of samples;

N, number of sample groups; M, Sliding repetition; S,
Sliding step;

Result: N×(M+1) samples of length L and width W ( N
groups, each group containing M+1 samples )

Generate N coordinates (k, p, q) with Random function
for the n-th coordinate (k, p, q) do

Generate a sample of size L×W centered on the current
coordinate (k, p, q) in the k-th gather

repeat
Sample again after sliding the sampler along trace

direction in step S ( centered on the current coordinate
(k, p, q+S×Times of repetition) and with size L×W)

until M sampling complete;
Pack M+1 samples into a group

end
Get N Groups of samples, in each of which there are M+1
samples with size L×W

When composing the training dataset, we use the random
function again in order to randomly select two samples from
each group of samples as input and label respectively, which
ensures that the useful signals are highly similar while making
the noise of input and label irrelevant in the vast majority of
cases.

The network architecture we use is a 17-layer DnCNN
network [6], which is a classical network proposed for image
denoising without fully connected and pooling layers, and the
padding operation makes the output after the convolutional
operation consistent with the input dimension. All hidden
layers use the ReLU activation function, and the hidden
layers except the input layer are connected with a BN (Batch
Normalization) layer after the activation function. The network
uses a residual learning method, which means that the output
of the output layer is the noise and the denoised data can be
obtained by making the difference between the input and the
residual. Previous studies have demonstrated that DnCNN is
highly usable in seismic data noise suppression, so we selected
this network to accomplish 2D seismic data noise suppression.

III. EXPERIMENTS

In this section, we conducted experiments on synthetic data
and field data. It should be noted that all experimental results
are based on the same model trained with a synthetic data. First

Fig. 2. Denoising comparisons of an enlarged area. Denoised results using (b)
our method and (c) f-x deconvolution. Removed noise using (d) our method
and (e) f-x deconvolution.

we specify the main parameters shared by both experiments.
The block size of the sampler is 64 × 256, the number of
sample groups in the training set is 10000, each DnCNN model
is trained with 60 Epochs, with batch size equal to 24 and the
“ADAM” optimizer, the initial learning rate is 0.003. Speaking
of the comparison method, we chose f-x deconvolution, which
is an efficient algorithm and it’s widely used in industry as
well.

A. Synthetic Experiments

We first evaluate the denoising performance on synthetic
data with 200 CRP gathers, each with a size of 200×3001. For
synthetic data, we add two types of noise in general, random
noise and coherent noise. Coherent noise added here is linear
coherent noise. In order to prevent the details we want to keep
from being suppressed in practical problems, we also add some
fluctuations to clean synthetic data. Fig. 2 shows part of our
synthetic data, from which we can clearly see the added noise
and fluctuation.

In Fig. 2, the denoising results of our method and f-x
deconvolution are displayed. To quantitatively evaluate the ef-
fectiveness of our noise suppression, we selected three metrics,
peak signal-to-noise ratio (PSNR), structural similarity (SSIM)
[15] and denoising efficiency, which is given by timing the
operation of the denoising program. The results corresponding
to Fig. 2 are in the “Medium quality test sets” section of the
table I. In terms of quantitative metrics, our method also has
a clear advantage.

Table I shows the denoising results of the well trained
model tested on test sets of different quality, including test
sets of significantly higher quality than the training set and
test sets of significantly lower quality than the training set in
terms of PSNR and SSIM. Our method, on different quality
test sets, performs better than f-x deconvolution, especially
on the test sets with low signal-to-noise ratio to improve the
denoising result the most, which indicates that our method
has better generalization ability. Regarding the denoising ef-
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TABLE I
DENOISING COMPARISON BETWEEN OUR METHOD AND F-X

DECONVOLUTION ON NOISED SEISMIC DATA
OF DIFFERENT QUALITY

Training sets: PSNR = 15.78, SSIM=0.1839

High quality test sets: PSNR = 21.78, SSIM=0.4070

Data type PSNR(dB) SSIM Running time(s)

Our method 32.46 0.8188 99.77
Fx-deconvolution 31.83 0.8170 168.52

Medium quality test sets: PSNR = 14.95, SSIM=0.1953

Data type PSNR(dB) SSIM Running time(s)

Our method 26.59 0.5999 107.71
Fx-deconvolution 24.76 0.5243 168.80

Low quality test sets: PSNR = 10.32, SSIM=0.1386

Data type PSNR(dB) SSIM Running time(s)

Our method 22.19 0.5156 106.99
Fx-deconvolution 20.10 0.4246 169.85

Fig. 3. Denoising comparisons of synthetic seismic data with dense coherent
noise. (a) Raw data. Denoised results using (b) our method and (c) f-x
deconvolution. (d) Enlarged raw data. Enlarged denoised results using (e)
our method and (f) f-x deconvolution. Removed noise using (g) our method
and (h) f-x deconvolution.

ficiency, our method reduces the running time by an average
of 38% compared to f-x deconvolution thanks to our efficient
model and the parallel computing power provided by CUDA.
Considering that f-x deconvolution is an efficient algorithm,
this is a considerable improvement.

In Fig. 3, to better verify the suppression of coherent noise
by our method, we add dense linear coherent noise to the

Fig. 4. Denoising comparisons of field seismic data. Denoised results using
(b) our method and (c) f-x deconvolution. Removed noise using (d) our method
and (e) f-x deconvolution of the enlarged area of the red boxes in (b) and (c).

synthetic data for testing, even though this is not common
in practice, but it should be valid as a verification of the
method. In the enlarged areas in Fig. 3(e) and Fig. 3(f), we
can clearly see that the f-x devonvolution results have a lot
of linear coherence noise residuals, such as the circled area in
Fig. 3(f), which is not the case with our method.

B. Field Experiments

In this subsection, we conducted experiments on field data
with 200 CRP gathers, each with a size of 200 × 3001.
Fig. 4 shows the denoising results of our method and f-x
deconvolution. On the one hand, from the noise removed in the
enlarged areas in Fig. 4(d) and Fig. 4(e), the f-x deconvolution
method shows some useful signal leakage, while our method
leads to almost no useful signal leakage with random noise and
especially coherent noise well suppressed. On the other hand,
the energy of the removed noise of our method is significantly
stronger. Simultaneously, in Fig. 4(b), the amplitude variations
are well reserved and can not be found in removed noise,
which is beneficial to the follow-up AVO analysis.

We further explore the denoising performance on the mul-
tichannel average amplitude spectrum. In general, noise in
seismic data has mainly high-frequency energy. In Fig. 5, we
plotted the multichannel average amplitude spectrum of the
raw data and the denoised data. For example, between 50 Hz
and 150 Hz, where most of the noise energy is concentrated,
the spectrum of the three signals are significantly separated
and the spectrum of our method lies below the spectrum of
the f-x deconvolution method. And Fig. 6 shows the raw data
and the denoised results filtered by 50 Hz high-pass filter. The
signal-to-noise ratio of the raw data in Fig. 6(a) decreases
significantly in the band superior to 50 Hz, indicating that
the band is predominantly noisy, and in both Fig. 6(b) and
Fig. 6(c), useful signals can be seen, but there is clearly more
noise remaining in Fig. 6(c), which verifies that our method
suppresses more of the noise energy. In terms of the removed

This article has been accepted for publication in IEEE Geoscience and Remote Sensing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LGRS.2023.3285951

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 5. Multichannel average amplitude spectrum of raw data and denoised
data.

Fig. 6. The 50 Hz high-pass filter results of (a) raw data and denoised data
using (b) our method and (c) f-x deconvolution. The 50 Hz high-pass filter
results of removed noise using (d) our method and (e) f-x deconvolution of
the enlarged area of the red boxes in (b) and (c).

noise higher than 50 Hz, in Fig. 6(d) and Fig. 6(e) we can see
less useful signal leakage with our method. For example, in
the area circled, less horizontal structures can be oberved in
Fig. 6(d), which means less signal leakage.

As processing and interpretation in the pre-stack stage re-
quire high-quality CRP gathers, on which the denoising effect
of proposed method is remarkable. In Fig. 7, the stack section
of removed noise is displayed with the same value range.
Our method still shows less useful signal leakage than f-x
deconvolution, which is consistent with our previous analysis.
The maximum value of the stack section of removed noise is
5.7% of the stack section of denoising result, which is much
less than 11.5% of f-x deconvolution, which further illustrates
the advantages of our method in terms of fidelity compared to
f-x deconvolution.

IV. CONCLUSION

We proposed an effective self-supervised learning denoising
method for both random noise and coherent noise through
using and extending the Noise2Noise strategy. In making full
use of the characteristics of common-reflection-point gathers,

Fig. 7. The stack section of noise removed by (a) our method and (b) f-x
deconvolution.

we managed to establish a simple but effective training set
construction method, which only needs noisy seismic data.
Compared with the methods commonly used in the indus-
try, the proposed method performs better in terms of noise
suppression on both synthetic and field data. Moreover, this
result can be generalized to test data with significantly lower
and significantly higher peak signal-to-noise ratios than the
training data. Finally, leakage of useful signal is better limited
by the proposed method as well.
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