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Unsupervised deep learning for ground roll and
scattered noise attenuation

Dawei Liu, Mauricio D. Sacchi, Member, IEEE, Xiaokai Wang, and Wenchao Chen

Abstract—The attenuation of coherent noise in land seismic
data, specifically ground roll and near-surface scattered energy,
remains a longstanding challenge. Although recent advances in
deep learning have improved signal separation from coherent
noise, supervised methods are limited by the necessity for realistic
training samples. To circumvent this issue, we propose an
unsupervised deep learning approach to attenuate ground roll
and scattered energy, eliminating the requirement for training
labels. Our method leverages the inherent low-frequency bias
of a generator network, which is naturally prone to learn self-
similar features during training. This empowers the network to
extract the desired component exhibiting self-similarity in the
time-space domain, while disregarding unwanted components.
Notably, horizontal components in seismic data exhibit pro-
nounced self-similarity. To enhance the self-similarity of ground
roll, we apply a linear moveout (LMO) correction to horizon-
tally align it and utilize the generator network for separation.
Additionally, for scattered energy attenuation, we employ the
generator network to extract flattened reflections after normal
moveout (NMO) correction. Our strategy distinctively merges
model-driven procedures, specifically NMO and LMO, anchored
in the geological velocity model. The synergy between data-
driven deep learning and model-driven processes underscores
the success of our approach. We demonstrate the validity of our
proposed method using both synthetic and field shot data. The
field data examples highlight the superior attenuation capabilities
of our method, surpassing conventional denoising techniques by
effectively reducing both random and coherent noise.

Index Terms—Unsupervised learning, seismic data denoising,
ground roll, scattered noise, self-similar features.

I. INTRODUCTION

GROUND roll and near-surface scattered energy present
significant challenges as the most severe forms of coher-

ent noise in land seismic data. Ground roll exhibits distinctive
characteristics such as dispersion, high amplitude, low fre-
quency, and low speed [1]–[3], while near-surface scattered
energy manifests complex diffraction patterns deriving from
secondary events [4]–[6]. The presence of such coherent
noise masks the desired reflections, necessitating effective
attenuation techniques that preserve the integrity of reflections
for subsequent processing and interpretation tasks.
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Coherent noise attenuation has been extensively studied in
previously published studies. They can be broadly classified
into four groups based on different prior knowledge regard-
ing the physical representation of useful signals or coherent
noise.The first and most commonly employed group is filter-
ing, which exploits a muting region between useful signals
and coherent noise in a specific transform domain. Bandpass
filtering and f-k filtering [7], [8] are widely used in the industry
to remove coherent noise or adopted as a preprocessing step
for subsequent fine separation [9]. Benefiting from advanced
multiscale signal representation, wavelet-domain filtering [10],
[11] and curvelet transform filtering [12], [13] garner consider-
able attention among researchers. These methods have demon-
strated strong capability to effectively attenuate coherent noise
when a distinct boundary exists in the transform domain.
However, their performance in real data scenarios is often
constrained due to the significant overlap between reflections
and coherent noise in the transform domain. Early studies
also emphasize the utilization of the signal predictability to
attenuate coherent noise and retrieve useful signals, or vice
versa. Typical examples include f-x prediction filtering [14],
projection filtering [15], adaptive prediction filtering [16],
[17], and non-stationary prediction filtering [18]. However,
the presence of large-amplitude coherent noise invariably
disrupts reflection continuity, resulting in degraded denoising
performance. The third group of methods is characterized by
low-rank assumptions on either useful signals or coherent
noise, including low-rank factorization [19]–[21] and nuclear
norm minimization [22], [23]. Most of these methods operate
in the Fourier domain, capitalizing on the low-rank property of
linear events. Consequently, their effectiveness in denoising is
contingent upon the linearity of the events, and they may yield
unsatisfactory results when confronted with highly curved
useful signals or coherent noise. Lastly, sparse priors are
increasingly used for coherent noise attenuation, requiring
sparse coefficients for the transformed representation of useful
signals or coherent noise [24]–[26]. Nonetheless, meeting this
sparsity assumption can be challenging because useful signals
and coherent noise often exhibit similar characteristics and
cannot be effectively distinguished in any sparse transform,
leading to suboptimal outcomes.

Most of the aforementioned methods are directly applicable
to ground roll or scattered noise removal. However, to further
improve the separation performance, particularly in strong-
energy situations, additional adaptations are necessary to tailor
the methods specifically for these noise types. One effective
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approach is to integrate normal moveout (NMO) and linear
moveout (LMO) corrections, which incorporate geological
knowledge from wave propagation velocities. The horizontal
nature of primary reflections after NMO provides a valuable
advantage for enhancing denoising methods in identifying
reflections [27]. For example, Porsani et al. [28] proposed
a ground-roll attenuation method based on singular value
decomposition (SVD). The SVD computation was performed
on the flattened reflections after NMO, yielding better results
than f-k filtering methods. Chiu [29] proposes a method to
improve the attenuation of both ground roll and scattered
noise by incorporating NMO and a randomizing operator into
multichannel singular spectrum analysis (MSSA) [30]. The
randomizing operator disrupts the coherence of the noise,
thereby transforming it into incoherent noise. Meanwhile, the
primary reflections, after undergoing NMO, maintain their
nearly horizontal characteristics, which facilitates better dif-
ferentiation between useful signals and coherent noise for
denoising techniques. The LMO contributes another strategy to
improving denoising methods by strengthening the coherency
of coherent noise, thereby enabling their subtraction from the
original data. Chiu and Howell [31] apply LMO to align
coherent noise and use an eigenimage filter to extract it. Subse-
quently, they subtract the extracted noise, resulting in a higher
preservation of useful signals. Based on the literature discussed
above, we conclude that NMO and LMO can substantially
improve denoising performance, inspiring us to incorporate
them into recently developed deep learning algorithms.

Recently, deep learning has garnered significant research
attention, primarily in the field of image processing, due to its
remarkable ability to recognize patterns and reveal hidden cor-
relations from complex data [32], [33]. Naturally, supervised
deep learning is introduced to various applications in seismic
data processing, including random noise denoising [34], [35],
ground roll attenuation [36], [37], scattered noise removal [38],
deblending [39], [40], and strong background-noise separation
[41]. Constructing training samples and then feeding them to
the network for training is a standard workflow for denoising
methods based on supervised deep learning. However, this
approach relies on a large set of clean-noisy seismic data
pairs. Despite the significant improvement in processing speed
with supervised deep learning, generating a large number
of genuinely realistic-looking synthetic data or pseudo-labels
for training purposes remains a challenge for coherent noise
attenuation. Additionally, the limited generalization ability has
an adverse effect to practical applications.

Unsupervised deep learning methods are able to learn from
the noisy data itself and can achieve satisfactory denoising
results even with limited training data [42], [43]. However, the
majority of these methods are specifically designed for atten-
uating random noise [44]–[46]. Therefore, there is a pressing
demand to develop unsupervised deep learning techniques
tailored to denoising coherent noise [47]–[50]. Motivated by
these insights, we propose a two-step method for attenuating
ground roll and scattered noise based on unsupervised deep
learning. Our approach leverages the intrinsic low-frequency
preference [51], [52] of deep learning and incorporates geo-
logical knowledge of approximate moveout velocities. Firstly,

we employ LMO correction on the raw seismic data to flatten
the ground roll. The LMO correction renders the ground
roll nearly horizontal and self-similar, while other signal
components remain low self-similarity. Subsequently, we use
a convolutional generator network (CGN) to extract the self-
similar ground roll. In the second step, NMO correction
is applied to align the reflections horizontally. Similarly,
another CGN focuses on extracting horizontally self-similar
reflections while preserving residual coherent noise. As the
first step effectively eliminates linear ground roll, the second
step primarily targets suppressing scattered energy. Compared
to our previous conference abstract [53], we introduce the
application of LMO, leading to significantly improved ground
roll attenuation performance. Additionally, experimental com-
parisons with conventional methods are conducted to validate
the advantages of our proposed approach.

II. METHOD

The proposed methodology for attenuating ground roll and
scattered noise relies solely on noisy label learning, which is
a zero-shot method that eliminates the need for constructing
a noisy dataset. In this section, we sequentially describe
the denoising principles, the U-shaped architecture with skip
connections, and the loss function employed to extract self-
similar informative features directly from the noisy data.

A. Denoising Principles

An useful intrinsic preference of neural networks for design-
ing unsupervised deep learning methods is the low-frequency
implicit bias, which refers to the tendency of networks to
fit signal components from low to high frequency during
training, also known as the frequency principle [51] or spectral
bias [52]. Many recent studies contribute to the discovery
of this experimental phenomenon. Zhang et al. [54] draws
considerable attention to a non-overfitting puzzle in deep
neural networks, contradicting traditional generalization theory
which suggests that models with excessive parameters easily
overfit the data. Ulyanov et al. [55] also observe that generator
networks tend to fit low-frequency and self-similarity features
prior to other features during the training process, naming this
property as “deep image prior." Rahaman et al. [52] highlight
the learning bias of deep networks towards low-frequency
functions through their experimental results.

To address the puzzle of why heavily parameterized neural
networks do not overfit the data, Xu et al. [56] contribute a de-
cay rate analysis method of the loss function from a frequency
perspective, concluding that the low-frequency component has
a faster decay and is easier to fit. Then, Luo et al. [57]
extend this analysis to handle infinite samples. However,
due to the curse of dimensionality, their 1-D explanation is
challenging to comprehend general deep neural networks with
high dimensions. Meanwhile, several other idealized models
are also introduced to provide rigorous mathematical proofs
[58]–[62].

Although definitive theoretical studies explaining the low-
frequency bias are still under development [63], this prop-
erty provides valuable insight and essential guidance for the
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practical application of unsupervised deep learning. Several
algorithms capitalize on this property to extract useful signals
from seismic data [64], [65]. These useful signals often consist
of low-frequency components or exhibit inherent self-similar
features, which can effectively be captured by deep neural
networks. Specifically, these algorithms employ a GCN with
randomly initialized inputs to fit the noisy seismic data. During
the training process, the GCN learns to represent the self-
similar useful components at early stages while subconsciously
excluding unwanted components. After a specified number of
iterations in the optimization process, the GCN successfully
extracts all the desired signals. Then, the subtraction of these
extracted signals from the raw seismic data leads to effective
noise attenuation. Liu et al. [66] highlight that horizontal
events exhibit high self-similarities, and NMO correction
accordingly enhances the self-similarities of reflections, facili-
tating successful reflection extraction by the generator. In light
of these findings, our proposed method employs two distinct
CGNs to attenuate ground roll and scattered noise from noisy
seismic data after LMO and NMO corrections, respectively.
Specifically, these networks are trained through unsupervised
learning to sequentially extract highly self-similar ground roll
and reflections, leading to satisfactory denoising results.

B. Model Formulation

We represent the raw seismic data as a matrix Y, which
consists of useful signals, coherent noise, and random noise.
Seismic reflections, originating from interfaces between layers
with distinct acoustic impedances, serve as the useful signals
in seismic exploration. Among the noise components, ground
roll, characterized by its low-frequency, high-amplitude events,
is a coherent noise that mainly travels along the ground
surface. Another dominant form of coherent noise is the near-
surface scattered noise. This noise arises from the scattering
of seismic waves due to small-scale heterogeneities in the
subsurface. In contrast, random noise includes incoherent dis-
turbances from varied sources, such as electrical interference,
ambient seismic sounds, or even environmental factors like
wind. It’s crucial to note that while these signal components
may intertwine closely during wave propagation, they are typ-
ically considered to be simply additive during the processing
phase [2], [11], [67]. Specifically, our model can be expressed
as follows:

Y = R+G+ S+N . (1)

Here, R denotes the seismic reflections, G represents ground
roll, S represents scattered noise, and N corresponds to the
random noise.

To achieve successful separation of ground roll and scattered
noise, traditional methods pay particular attention to char-
acterizing the above signal components with different prior
knowledge. The objective function is formulated as a penalized
cost

min
R,G,S

E (Y,R,G,S) + PR (R) + PG (G) + PS (S) , (2)

where E represents the reconstruction error, in other words,
the data fidelity or the data-fitting term; the notation P denotes

a regularization or a priori term, which is a penalization
imposed on the signal component of the proposed model.

Different probability distributions of N have led to the
introduction of various E models to represent it, such as the
Huber loss or the l1 loss. In this work, we simply consider
N as Gaussian noise and define E as the mean squared error.
Therefore, (2) can be rewritten as

min
R,G,S

1

2
∥Y−R−G−S∥22+PR (R)+PG (G)+PS (S) . (3)

To achieve successful signal recovery from raw seismic data,
the appropriate regularization terms P are necessary. Tradi-
tional methods utilize problem-specific regularization, such as
low-rank or sparsity assumptions, to characterize R, G, and S.
The optimization process for solving (3) introduces non-linear
reconstruction mappings R̂= hR(Y) , Ĝ= hG(Y) , and Ŝ=
hS(Y). These traditional methods, categorized as model-
based approaches, are generally based on an energy model
and explicit regularization with deterministic mathematical
formulations.

Different from traditional methods, the low-frequency bias
of GCN serves as an implicit regularization. The term "im-
plicit" refers to the fact that the regularization effect cannot
be expressed explicitly in the objective function. We incor-
porate this property into our model through neural network
parametrization as follows:

min
θR,θG

1

2
∥Y −R−G− S∥22

s.t. R = fθR (ZR) ,G = fθG (ZG) ,
(4)

where fθR and fθG are distinct GCNs used to parameterize
R and G, respectively. The symbols θR and θG denote their
corresponding weight matrices and biases. Similarly, ZR and
ZG are randomly initialized matrices serving as inputs to
the GCNs. Here, we ignore the penalty of S in (3) due to
its complexity. However, this is not an issue since we can
obtain S by subtracting G and R from Y. In this way, the
model is considerably simplified and easier to implement.
Inserting the neural network parametrization into (4) generates
an unconstrained reconstruction problem

min
θR,θG

1

2
∥Y − fθR (ZR)− fθG (ZG)− S∥22 . (5)

The network parametrization process involves a progressive
recovery mapping from Z to the desired signals through
network training iterations. Unfortunately, solving (5) directly
through joint optimization of θR and θG is challenging due to
its high non-convexity. To simplify it, we split (5) into two
subproblems

min
θG

1

2
∥Y −R− fθG (ZG)− S∥22 , (6a)

min
θR

1

2
∥Y −G− fθR (ZR)− S∥22 , (6b)

and solve them sequentially. To make the former subproblem
solvable and reduce uncertainties, we apply LMO to G
to enhance its self-similarity. In other words, the network
parametrization is performed on the flattened G, i.e., LG =
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Fig. 1: Illustration of noise attenuation by self-similar feature extraction networks. The reflections, ground roll, scattered noise,
and random noise are symbolized by R, G, S, and N, respectively.

fθG (ZG), where L denotes the LMO operator. By assuming
an initialization of R=0 and S=0, the objective of ground
roll attenuation in (6a) is equivalent to determining the optimal
network parameter θ∗ that minimizes the energy function

θ∗G = argmin
θG

1

2
∥LY − fθG (ZG) ∥22 , (7)

where the only undetermined parameter is θG. This parameter
can be solved using classical gradient descent introduced in
the subsequent subsection II-D. Once θ∗ is determined, the
separated ground roll can be quickly obtained from the output
of GCN by G∗ = L†fθ∗

G
(ZG), where L† denotes the adjoint

LMO operator.
Then, we incorporate the NMO operator N to facilitate

solving the subproblem (6b). Similarly, we presume an ini-
tialization of S=0. The reflections are horizontally aligned
through NMO, allowing us to extract these self-similar reflec-
tions by minimizing the following objective function:

θ∗R = argmin
θR

1

2
∥N (Y −G∗)− fθR (ZR) ∥22 . (8)

Upon obtaining θ∗R, we can reconstruct the extracted reflections
by R∗ = N †fθ∗

R
(ZR), where N † denotes the adjoint NMO

operator. This reconstruction leads to the successful attenu-
ation of scattered noise. Additionally, we can calculate the
separated components by Ŝ = Y −G∗ −R∗, which consists
of a mixture of scattered noise and random noise. The above
procedures are illustrated in Fig. 1.

C. Network Architecture

The network architecture employed in our work is a U-Net
type fully convolutional network, which has proven effective
in various image and signal processing tasks. This architecture
is composed of three fundamental components: downsampling
blocks, skip blocks, and upsampling blocks. These components
are constructed using a combination of convolutional layers,
batch normalization, downsampling layers, upsampling layers,
and activation function layers. The overall structure of the
network can be visualized in Fig. 2, providing a clear rep-
resentation of its components and their connections.

Our network design is primarily motivated by the exploita-
tion of intrinsic self-similarities present in seismic data, which
often contain valuable information. By incorporating convolu-
tional filters, the network can leverage the weight replication
mechanism, allowing the same filters to recognize common
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Fig. 2: Network architecture used for self-similar feature extraction.

features across different locations. These common features are
self-similar and prove particularly beneficial in seismic data
analysis. Furthermore, operating at different scales is highly
advantageous in this context. Working across multiple scales
enables us to capture features at varying levels of granularity.
This results in a comprehensive model that accurately repre-
sents complex patterns and captures non-linear relationships
in seismic signals. Moreover, multiscale analysis permits the
identification of finer features that are typically challenging to
detect.

To facilitate comprehensive feature extraction across mul-
tiple scales, we incorporate five downsample blocks and five
upsample blocks into our network architecture. This configura-
tion effectively captures both local and global features within
seismic data, significantly enhancing the ability to extract
multiscale self-similar patterns with meaningful information.
During the downsampling process, we carefully increase the
number of feature channels from 8 to 128. This selection
strikes a balance between feature extraction capability and
computational efficiency. By gradually increasing the number
of feature channels, the network can capture more complex
and abstract features as the scale decreases. This enhances
the overall representational power of our network while main-
taining computational tractability. The upsampling process is
symmetric to the downsampling process, gradually decreasing
the number of feature channels from 128 to 8. This sym-
metrical upsampling process enables the reconstruction of the
original data size while preserving the self-similar features
and meaningful multiscale information extracted during the
downsampling process.

In addition to the original U-Net architecture [68], we intro-
duce several modifications to further enhance its functionality
and address specific challenges encountered in seismic data
processing. Firstly, we replace bilinear interpolation, com-

monly used in traditional U-Net architectures, with transposed
convolution. This modification aims to overcome potential
checkerboard artifacts that may arise during upsampling. By
utilizing transposed convolution, we ensure better spatial co-
herence and preserve the integrity of the extracted features
[69].

Secondly, we have opted for leaky rectified linear unit
(ReLU) activation functions instead of traditional ReLU. This
choice is motivated by the need to prevent neuron annihilation
and promote a more robust training process. Leaky ReLU al-
lows for the propagation of small negative gradients, ensuring
information retention even in regions with negative activations.
This modification enhances the network’s ability to capture
subtle details and improves the overall gradient flow during
training.

Lastly, we have implemented a skipping block strategy to
address the issue of gradient vanishing. This strategy involves
establishing direct connections between the output of each
downsample block and its corresponding upsample block. By
incorporating these skip connections, we ensure that important
gradient information is preserved and propagated throughout
the network during the training process. This approach mit-
igates the problem of gradient vanishing and enhances the
stability and convergence speed of our network.

In summary, the modifications we have introduced, coupled
with the underlying U-Net architecture, contribute to the
effectiveness and performance of our network in extracting
self-similar features from seismic data. By leveraging the
multiscale feature extraction capability, along with careful
adjustments and design choices, our network is well-suited
to address the challenges posed by ground roll and scattered
noise attenuation.
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Fig. 3: Illustration of training process for extracting reflections.
The subscripts of θ denote the various iterative stages in the
self-similarity extraction process by fθR .

D. Network Training and Denoising Process

To achieve effective ground roll and scattered noise atten-
uation, the key lies in solving the optimization subproblems
(7) and (8) sequentially, leveraging the inherent low-frequency
bias of GCN that suggests a learning progression from simple
to complex features [70].

The first step involves solving (7), which focuses on mini-
mizing the reconstruction error under the L2 norm. In this op-
timization subproblem, the coding matrix ZG is sampled from
a uniform distribution in the range of [−1, 1] and possesses the
same spatial dimensions as the raw seismic data Y. This is
an unsupervised network training task since it relies solely
on the determined coding matrix Z and the observed seismic
data Y. To tackle this optimization challenge, we employ the
ADAM optimizer to train the network by gradient descent,
iteratively updating the parameters θG. At the beginning, the
network parameters are randomly initialized as θG0 . As the
training progresses, the reconstruction error in (7) gradually
diminishes. The optimization process can be regarded as the
reconstruction process of Y with LMO by GCN. At the ith
iteration, the parameters θGi

are mapped to a network output
fθGi

(Z).
The features extracted by GCN exhibit variations across

different training stages, influenced by the inherent low-
frequency bias. Additionally, the specific network structure
depicted in Fig. 2 enhances the network’s ability to extract self-
similar features at multiple scales. As a result, the network is
capable of reconstructing signal components with pronounced
self-similar features in earlier iterations. Conversely, recon-
structing other signal components with fewer self-similarities
necessitates an extended period of iterative training. By virtue
of this sequential reconstruction process, GCN is an extremely
useful tool for separating signal components.

Before commencing network training, we perform LMO
correction on the raw seismic data Y to flatten ground roll

G. The horizontally aligned ground roll G exhibits a substan-
tial degree of self-similarity compared to other components.
Therefore, leveraging the low-frequency bias of GCN, which
aggressively extracts self-similarities during the optimization
process, allows for the gradual extraction of G prior to
other signal components. By carefully selecting the number of
iterations, we can successfully separate G from Y. Notably,
we have observed that a broad range of iteration numbers yield
satisfactory results, demonstrating the robust adaptability of
the approach.

The process of solving (8) follows a similar approach. By
applying NMO, the reflections R are encouraged to exhibit
a higher degree of self-similarity compared to other signal
components. The optimization process itself tends to favor
solutions that exhibit simpler patterns, implicitly facilitating
the extraction of flattened reflections. To achieve a satisfactory
separation of R, we continue this iterative network optimiza-
tion until the desired flattened reflections are fully extracted.
Subsequently, we reverse the NMO correction, effectively iso-
lating R from the remaining signal components. A schematic
visual representation of the training process is depicted in
Fig. 3. The extracted reflections consistently exhibit a high
level of fidelity and accuracy, thus affirming the efficacy and
feasibility of our proposed technique.

III. EXAMPLES

The performance of our method is evaluated in both syn-
thetic and field data. To conduct the numerical experiments, we
utilized an NVIDIA GTX 1080-Ti graphics processing unit,
which allowed us to process a single gather in approximately
2 minutes. The iteration parameter for early stopping plays
a crucial role in the success of our method. To account for
varying noise levels, we fine-tune this parameter according
to individual denoising results. Throughout all experiments,
stopping iterations range from 1500 to 2500, ensuring a thor-
ough evaluation. To facilitate this stopping iteration selection
and ensure training stability, we employ a relatively small
learning rate of 5e−4. Additionally, at each iteration, we
introduce Gaussian noise with a specified variance to the input
Z, aiming to further enhance the robustness of our approach.
The chosen variance is set to 0.01, providing an appropriate
perturbation level. In the field data example, we compare our
results with those obtained from the high-resolution Radon
transform (HRT) method. The HRT method, renowned for its
effectiveness in seismic coherent noise attenuation, is widely
employed within the industry. This comparative analysis al-
lows us to assess the performance of our proposed technique
and demonstrate its efficacy and superiority in effectively
mitigating ground roll and scattered noise.

A. Synthetic Data Example

To evaluate the effectiveness of our method, we generate 3D
seismic synthetic data using an acquisition geometry depicted
in Fig. 4. This acquisition geometry serves as the foundation
for conducting the following two experiments, allowing us to
assess the performance of our network in extracting ground
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Fig. 4: Designed acquisition geometry employed for generat-
ing 3D synthetic seismic data.

roll and reflections, which are crucial in solving (7) and (8),
respectively.

The first dataset is generated to test the performance of our
network in extracting ground roll for solving (7). Figure 6(a)
illustrates the synthetic data modeled in the frequency domain,
consisting of three hyperbolic reflections representing the
desired signals and coherent noise represented by one linear
event. The velocity models are shown in Fig. 5. Given the
relatively low variability in P-wave velocities, a constant S-
wave velocity has been used for the sake of simplicity. The
central frequency of the adopted Ricker wavelet is 20 Hz.
The synthetic dataset comprises a total of 9 gathers, each
containing 40 traces with a spatial sampling interval of 40 m.
The temporal sampling interval is set as 4 ms, and the spatial
distance between receiver lines is 120 m. To provide a more
realistic representation of seismic data, we also incorporate
random noise into the synthetic dataset, aligning it with real-
world conditions.

Compared to field seismic data, the synthetic example
exhibits a relatively simpler structure, enabling us to assess the
effectiveness of the LMO-based method alone. The velocity
of ground roll and the zero offset travel time are known
during data generation, allowing us to apply LMO correction
specifically to ground roll and effectively flatten its trajectory.
Figure 6(b) illustrates the extracted ground roll, which remains
consistent across all gathers, thereby verifying the efficacy of
our method. By subtracting Fig. 6(b) from Fig. 6(a), we obtain
the denoised results shown in Fig. 6(c). The subtraction results
lead to a clear observation that the GCN effectively eliminates
nearly all coherent noise while the significant reflection energy
remains intact. Notably, even in the intersection region, our
method yields impressive results.

To further emphasize the ground roll separation ability
of our approach, we compare Fig. 6(b) with the ground

(a)

(b)

Fig. 5: Velocity models of the first synthetic data. (a) P-wave
velocity model for reflections. (b) S-wave velocity model for
ground roll.

truth depicted in Fig. 6(d). Visual inspection reveals mini-
mal discernible differences between the two, supporting the
conclusion that our method successfully removes unwanted
ground roll without compromising the integrity of the desired
reflections. Their differences are captured in Fig. 6(e), which
displays the discrepancies between the modeled and extracted
ground roll. To quantify the differences, we calculate the
structural similarity index measure (SSIM) and obtain a high
value of 0.9835, indicating a strong coherence between the
original ground roll and the extracted one.

The second dataset aims to assess the performance of our
network in extracting reflections after NMO, which is the
underlying assumption for solving (8). Figure 7(a) presents the
original signals generated in this experiment, with parameters
identical to the first dataset, except for incorporating an
additional linear event to increase the extraction difficulty. The
extracted results by GCN are shown in Fig. 7(b), revealing a
distinct and continuous separation of the reflections. Despite
the relative simplicity of the synthetic data, the direct extrac-
tion of reflections offers an alternative approach to eliminating
coherent noise. The difference profiles depicted in Fig. 7(c)
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Fig. 6: Synthetic example demonstrating the application of our method for ground roll extraction. (a) Synthetic data composed
of reflections (modeled by hyperbolic events) and ground roll (modeled by linear events). (b) Ground roll extracted by our
method. (c) Subtraction of (b) from (a). (d) Modeled ground roll serving as the ground truth. (e) Deviations between the
modeled and extracted ground roll, highlighting any disparities.
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Fig. 7: Synthetic example for extracting reflections with our method. (a)Synthetic data comprising hyperbolic-modeled
reflections and linear-modeled ground roll. (b) Reflections extracted by our method. (c) Subtraction of (b) from (a).

further support this finding, where only negligible leakage
can be observed. In summary, the results obtained from the
synthetic data experiments demonstrate the potential of our
approach for real-world applications.

B. Field Data Example

The field dataset used in this study to examine the effective-
ness of the proposed method is a common-shot gather with 16
receiver lines, which was acquired in a desert environment of
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Fig. 8: Field data example. (a) Noisy data. Red-box regions are selected for enlarged evaluation in Fig. 10. (b) Separated
reflections by our method. (c) Removed coherent noise by our method.

Western China. As depicted in Fig. 8(a), this dataset exhibits
a high degree of complexity due to severe contamination
from ground roll, scattered noise, industrial noise, and random
noise. Highlighted by blue polygons, ground roll manifests as
low-frequency, high-amplitude waveforms. These waveforms
spread across all seismic gathers and obscure valuable reflec-
tion signals from strong coal seams. Since our exploration is
conducted in desert loess, the highly heterogeneous subsurface
conditions foster wave scattering, as indicated by green poly-
gons. Unlike the ground roll, scattered noise is more difficult to
predict. Besides, the main energy of scattered noise is broad-
band and it can mimic the characteristics of true reflection
events, which complicates the data processing. Additionally,
our dataset includes a considerable amount of random noise,
adding another layer of complexity. Given its unpredictability
and broad frequency range, random noise originates from
various sources and is notably challenging to manage. As
a result, the desired reflections corresponding to the coal
seam at approximately 1.5 seconds are difficult to discern.
To effectively attenuate the unwanted noise and enhance the
visibility of the reflections, we employ the proposed two-step
approach for data processing.

In the first step, we utilize LMO correction to align ground
roll and separate it using the proposed network architecture. To
account for the dispersion nature of ground roll, we repeat this

procedure with three different velocities, effectively removing
three groups of linear ground roll. We prioritize this step
because the morphology of ground roll is usually complete
and consistent in raw data, making it more amenable to
extraction. In contrast, extracting reflections directly from the
raw data proves challenging due to the presence of strong
amplitude coherent noise that obscures them, posing difficul-
ties in velocity estimation and precise recognition. Therefore,
the application of NMO correction to flatten the reflections
is carried out in the second step. Partial coherent noise has
been removed in the first step, simplifying the extraction of
horizontal reflections. However, it should be noted that the
dataset may still be contaminated by strong scattering before
extracting the reflections, as observed in the land example
used in this experiment. This strong amplitude noise still poses
challenges to the accurate recognition of reflections. Hence, we
remove partial coherent noise slightly before the second step,
following the approach in [71] and [11]. This preprocessing
step is conducted carefully to avoid damaging the reflections,
resulting in more precise identification of reflections and
facilitating the subsequent extraction by GCN.

The results of our method are plotted in Fig. 8(b), where
ground roll and scattered noise are no longer observable,
and the target layer becomes clearly visible. The appropriate
selection of stopping iterations is crucial for the success of our
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Fig. 9: Field data result comparisons. (a) Separated reflections by the NMO-based unsupervised method [53]. There are still
ground roll residues near the apex regions of far-offset gathers, as indicated by green arrows. (b) Removed coherent noise
by the NMO-based unsupervised method. (c) Separated reflections by the high-resolution Radon transform method. Scattered
noise is not effectively removed, as denoted by the blue circle. (d) Removed coherent noise by the high-resolution Radon
transform method.

method. If the number of iterations exceeds the correct number
of primary events fully present in the extracted data, residual
ground roll and scattered noise may also be extracted, leading
to inadequate denoising and distortion of the target reflections.
Conversely, if the number of stopping iterations is too small,
the reflections may not be fully recovered, resulting in leakage
into the removed noise gathers. By carefully choosing the
stopping iterations, our method effectively removes ground
roll, scattering energy, and random noise without introducing
spatial-amplitude smearing. The efficacy of our method can
be further supported by examining the removed coherent
noise in Fig. 8(c), where only minimal distortion of the

primary reflections can be observed. Our method achieves
accurate denoising while preserving the integrity of the target
reflections.

Figure 9 presents two sets of comparative results. The
first set is obtained by the unsupervised method described
in our previous abstract [53]. As shown in 9(a), this method
proves to be effective as the energy of the scattered noise
is significantly reduced. However, although the amplitudes of
target reflections are well preserved, conflicting dipping noise
trains are still visible, as indicated by the green arrows in
9(b). There are two main factors contributing to this subop-
timal outcome. Firstly, the presence of strong coherent noise
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Fig. 10: Zoomed-in view of field seismic data results using our method. (a) Original data. (b) Separated reflections. (c) Separated
coherent noise. By comparing the yellow boxes, most of the scattered energy and ground roll are attenuated. A red arrow
signifies that this potential reflection event is becoming more prominent.

dominates, making accurate velocity estimation challenging.
Without accurate velocity estimation, the reflections cannot
be adequately flattened, resulting in reduced self-similarities.
Secondly, these remaining dipping noise trains possess a
similar velocity as reflections, especially near the apex regions
in far-offset gathers, unexpectedly allowing them to be simul-
taneously extracted by the network. These findings underscore
the necessity of incorporating LMO to handle linear coherent
noise and enhance the flexibility of the unsupervised method.

Figure 9(c) illustrates the denoised results obtained by the
HRT method. Due to the severe masking effect of the dominant
ground roll and scattered noise on the target reflective events,
complete separation cannot be achieved in the Radon domain.
As a result, the application of the high-resolution linear Radon
filter attenuates a significant portion of the coherent noise
but still leaves residual ground roll. Additionally, there is
slight removal of the first arrivals to compromise the filtering
region selection. Furthermore, significant scattered noise is
still noticeable, as indicated by the blue circle in Fig. 9(c).
This is primarily because the high-resolution Radon filter
cannot effectively handle scattered noise that lacks apparent
linear features. In Fig. 9(d), a relatively successful ground roll
removal is observed. However, scattered noise and random
noise remain unresolved.

To further illustrate the effectiveness of our method, we
plot the enlarged region indicated by the red box in Fig. 8.
The denoised results in Fig. 10(b) show that most reflections
become clean and continuous, particularly in the regions indi-
cated by the yellow boxes. Additionally, as denoted by the red
arrow in Fig. 10(b), a potential reflection event becomes more
prominent after being processed by our method. The removed
coherent noise in Fig. 10(c) further confirms that strong
scattered energy has been attenuated without any detectable
loss of reflection energy, thereby demonstrating the fidelity of
our method.

It is important to note that NMO flattening in the shot
gather is not entirely correct, as reflections in the shot domain
can have asymmetric apexes concerning offset. However, this
assumption holds valid for sedimentary environments with
non-significant structural dips. We would like to mention that
the hyperbolic moveout assumption in the shot domain is also
utilized by industry-proven methods, such as those proposed
by [72] and [73].

IV. CONCLUSION

We propose an unsupervised deep learning method for
ground roll and scattered noise attenuation, free for scarce
or expensive labels. By leveraging the intrinsic preference
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of neural networks for low-frequency data during training,
we employ two generator networks to reconstruct ground
roll and reflections sequentially by fitting raw seismic data,
aided by early stopping. Additionally, to ensure successful
extraction, LMO and NMO are employed as two auxiliary
tools, respectively. Synthetic data experiments demonstrate
the satisfactory multiscale self-similar feature extraction ca-
pability of the proposed network. This approach significantly
attenuates coherent noise while preserving the integrity of
the target reflections, outperforming the conventional Radon
transform in complex land field data due to its robust non-
linear feature extraction ability. Future work will focus on
minimizing human involvement in the workflow and extending
its application to other geophysical data types and domains.
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