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ABSTRACT

Borehole imaging is crucial in geologic research as it offers
insights into subsurface formations and supports reservoir
assessment, mineral exploration, and hydrocarbon extraction.
However, the effectiveness of borehole imaging is limited by
the incompleteness of data due to the design constraints of bore-
hole imaging tools. Missing areas in borehole images pose chal-
lenges to geologists. Although existing methods, such as pattern
filling and convolutional neural network-based techniques,
show some efficacy, they often require a large number of com-
plete images for training. In recent years, unsupervised deep-
learning and tensor-based methods have gained attention for
their ability to reconstruct missing or degraded geologic images
by leveraging the structural characteristics of these images. In
particular, tensor representations based on Tucker decomposi-
tion have shown strong capabilities in data completion.

Inspired by this, we develop a novel self-supervised tensor
neural network (TNN) using Tucker decomposition as our back-
bone. Because borehole images are originally in 2D, converting
them into tensor representations is a critical step in leveraging
our tensor representation. To achieve this, we introduce the
adaptive boundary-detection cropping with augmentation algo-
rithm, which adapts 2D images into 3D tensors. After interpo-
lating the tensors using our tensor network, we use adaptive
slice concatenation with replacement to restore complete images
from the enhanced tensors, ensuring that the tensor representa-
tion of the 3D data is accurately shown in 2D images. Our TNN
can be further enhanced by incorporating a structural regular-
izer. Actual data experiments demonstrate that our method ef-
fectively fills gaps in borehole images with greater clarity and
detail. The completed images retain the crucial geologic features
and textures, surpassing some of the existing self-supervised
learning methods.

INTRODUCTION

In geologic research, borehole microresistivity imaging is a piv-
otal tool, offering insights that enable a profound understanding of
subsurface formations. This technology has facilitated the visuali-
zation of geologic structures and features, thereby aiding in the
comprehension of reservoir properties, mineral exploration, and hy-
drocarbon extraction (Lofts and Bourke, 1999). This paper focuses
on images obtained by the formation microscopic imager (FMI),
which is crucial in advancing borehole imaging by providing
high-resolution images of borehole walls (Rider, 1986; Luthi,
2001). These images, obtained by measuring microresistivity var-
iations, reflect changes in fluid, rock, and structural characteristics

within subsurface formations, providing valuable information for
geologic research. For example, the detailed information on rock
properties provided by borehole images is crucial for reservoir
assessment, enabling a deeper understanding of lithology, shale
content, fluid distribution, and fractures.
However, one of the primary challenges faced by borehole im-

aging is the issue of data gaps resulting from the design limitations
of the borehole imaging logging tools, which may lead to voids
in the images. Although FMI borehole images achieve a coverage
rate of 60%, the remaining 40% (Jiang et al., 2024) contains gaps,
making the interpretation of the images more challenging and
potentially leading to inaccuracies in estimating factors, such as
fractures. Although introducing new logging tools or combinations
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of tools can reduce these gaps, completely eliminating them during
data collection remains a significant challenge.
Researchers have proposed various methods to address this issue,

such as traditional pattern-filling and data-driven techniques. For ex-
ample, Filtersim (Zhang et al., 2006; Mariethoz and Renard, 2010;
Mustapha and Dimitrakopoulos, 2010; Hurley and Zhang, 2011) is
a commonly used pattern-filling algorithm that fills gaps in formation
images by extracting patterns from other image regions or databases.
However, for complex geologic structures, such as large formations or
elongated curves, Filtersim’s filling effect often needs to be improved.
To tackle this issue, some researchers have proposed advanced tech-
niques based on multiple-point statistics (MPS) to reconstruct the
missing parts of formation images better. Although these methods
have achieved some success in some instances, they often require large
amounts of complete image data as training samples. Compared with
the MPS method, Assous et al. (2014) use the sparse representation of
multiscale and multidirectional curvelet transforms to decompose the
imaging sections into morphological components. The complete bore-
hole image is then obtained through the inverse transformation and
reconstruction of these components. This method does not require
training data but encounters labor-intensive parameter selection.
With the rapid development of deep-learning technology, convo-

lutional neural network (CNN)-based image inpainting methods
have gained widespread attention, such as blind inpainting CNN
(Cai et al., 2017) and Shift-Net (Yan et al., 2018). They adopt
CNN structures to fill gaps by learning structural and textural in-
formation from images. However, like MPS methods, these
CNN-based approaches typically require large amounts of complete
image data as training samples, which are scarce in practice.
Self-supervised deep-learning methods have begun to receive at-

tention recently to mitigate the requirement for labels (Kong et al.,
2020; Liu et al., 2020, 2023; Saad et al., 2021; Fang et al., 2023; Li
et al., 2024). These methods do not require complete image data as
training samples; instead, they use the images’ inherent structure
and statistical properties to reconstruct missing or degraded forma-
tion images. For example, deep image prior (DIP) (Wang et al.,
2019b) is a commonly used unsupervised deep-learning method
that fills gaps in formation images by learning the prior distribution
of images. However, DIP methods may introduce artifacts or over-
smoothing without an appropriate early stop and, thus, require
further refinement. Jiang et al. (2024) suggest a self-supervised ap-
proach to construct training data sets by further masking original
images. Unlike DIP, these mask-based methods (Li et al., 2023b)
reveal increased effectiveness as they learn from a broader spectrum
of patterns. This underscores the importance of expansive training
data sets. Accordingly, they are less effective than DIP at single-im-
age filling with less pattern diversity.
In recent years, considerable interest has been shown in tensor-

based representations. Tensor completion techniques, particularly
low-rank tensor completion (Xie et al., 2018), have achieved success
in various fields, such as seismic data interpolation (Liu et al., 2022),
hyperspectral imaging reconstruction (Zhang et al., 2021), and traffic
data prediction (Tan et al., 2013). Tensors, as extensions of matrices
and vectors, better capture the intrinsic structure and relationships in
multidimensional data (Zhang et al., 2022), thereby demonstrating
powerful capabilities in recovering missing elements in incomplete
multidimensional data. Compared with matrix completion tech-
niques, tensor completion can better capture the high-order depend-
encies and structures in data, achieving higher recovery accuracy.

Introducing tensor-based methods in borehole imaging holds
promise for addressing the challenge of recovering missing data
and further unleashing the potential of borehole imaging technology.
Because FMI images are obtained from observations of the same
geologic structures, the pixels are highly correlated and exhibit
low-order features. Therefore, using tensor-based methods to fill gaps
in borehole images is feasible. By representing borehole imaging data
in tensor form and applying techniques such as Tucker decomposi-
tion, we can better understand and use the latent structure and
information in borehole data, achieving a more accurate and compre-
hensive description of formation features.
Among tensor decomposition methods, Tucker decomposition

(Tucker, 1966) is a commonly used and powerful tool in various fields,
such as image processing, signal analysis, and data compression, pro-
viding new insights and methods for data processing and analysis. It
decomposes high-dimensional tensors into the product of multiple
low-dimensional subspaces, thereby achieving efficient data represen-
tation and dimensionality reduction. Compared with higher-order sin-
gular value decomposition (HOSVD) (De Lathauwer et al., 2000),
Tucker decomposition is particularly well suited for our application.
Although both methods can decompose high-dimensional tensors into
product forms, Tucker decomposition allows each mode to have its
own dimensionality reduction matrix, which helps preserve the struc-
tural information of the data. In contrast, HOSVD requires the same
dimensionality reduction matrix for all modes during reduction (Kolda
and Bader, 2009), and its factor matrices are orthogonal, making
HOSVDmore suitable for applications that require orthogonal proper-
ties. In this work, we primarily use Tucker decomposition to capture
the structure of our data. However, it is noteworthy that advanced de-
composition techniques, such as tensor train (TT) (Zhang et al., 2022)
and tensor ring (TR) (Sedighin and Cichocki, 2021), have been shown
to achieve better performance than Tucker decomposition in traditional
methods, especially in certain high-dimensional contexts (Oseledets,
2011). These techniques will be considered as potential avenues for
future research to enhance our approach to high-dimensional problems.
Combining deep learning with tensor-based representations holds

tremendous potential for advancing borehole imaging technology.
Deep-learning techniques can learn features from large amounts
of data, improving the model’s generalization ability. Meanwhile,
tensor-based representations can better capture the high-order rela-
tionships and structural information between data, especially for
processing high-dimensional data. In recent years, fully connected
TNNs have been widely applied to solve recovery problems, achiev-
ing remarkable results. For example, Liu et al. (2021) propose a fully
connected tensor network decomposition method to effectively solve
the robust tensor completion problem, achieving significant results.
Zheng et al. (2021) demonstrate the application of fully connected
tensor network decomposition in high-order tensor completion, fur-
ther validating its superior performance. In addition, Yang et al.
(2022) introduce a high-order tensor completion algorithm based
on weighted optimization using fully connected tensor networks,
showcasing excellent performance in practical applications. These
studies indicate that fully connected TNNs exhibit great potential
and advantages in fields such as image restoration and signal process-
ing. By combining deep learning with tensor-based representations,
we can fully exploit the advantages of deep learning in feature extrac-
tion and pattern recognition and the benefits of tensor representation
in data representation and structural modeling, thereby improving the
efficiency and accuracy of borehole image processing.
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Inspired by this, we propose a self-supervised TNN with the ro-
bust representation capabilities of deep learning to enhance FMI
image inpainting. The architecture of each network layer mirrors
Tucker decomposition structure, allowing for self-supervised learn-
ing without fully labeled borehole images. This tensor computation
forms the backbone of our model, which leverages the structural
correlation inherent in geologic layers. Meanwhile, combining this
with a deep network architecture improves the ability of the model
to capture complex rock formations in detail. In addition, we inte-
grate total variation (TV) regularization (Rudin et al., 1992) to en-
sure smoother filling effects of the reconstruction images. Because
borehole images are originally in 2D, transforming them into tensor
representations is a crucial step to harness the power of the proposed
tensor representation. To this end, we propose an adaptive boun-
dary-detection cropping with augmentation (ABDCA) algorithm
to adapt 2D images into tensors. After data completion with the
proposed method, we use adaptive slice concatenation with replace-
ment (ASCR) to restore the enhanced images. This ensures that the
tensor representation of 3D data is accurately shown in 2D images.
Our research attempts to establish a new paradigm in borehole im-
age filling, which can reliably operate amidst the challenges of
scarce data and complex geologic structures. Validation using
real-world data demonstrates the accuracy of the proposed ap-
proach. Combining deep learning with tensor representation enhan-
ces the model’s capacity to represent and reconstruct intricate
patterns in borehole images, setting new benchmarks for high-ac-
curacy reconstruction. The main contributions of this work can be
summarized as follows:

1) We develop a self-supervised TNN aimed at enhancing FMI
image restoration. The model leverages the inherent structural
correlations within geologic layers, using tensor computation
as a foundation and incorporating deep network architecture.
This approach enables self-supervised learning without fully
labeled borehole images. To the best of our knowledge, this is
the first attempt at using the tensor method for borehole im-
age interpolation.

2) To leverage the powerful reconstruction ability of tensorial net-
works, we propose an ABDCA algorithm to adapt 2D images
into tensors. After processing the data using the proposed TNN
method, we use ASCR to restore the enhanced images. This
ensures that the tensor representation of 3D data is accurately
shown in 2D images.

3) The proposed TNN framework can be enhanced by embed-
ding a structural regularizer. This advancement is illustrated
by incorporating TV regularization to ensure the continuity of
the reconstructed image.

METHOD

Supervised deep learning has demonstrated remarkable profi-
ciency in data reconstruction tasks. However, its success hinges
on the availability of extensive, complete image data sets. This re-
quirement often makes it impractical for borehole imaging because
obtaining complete data sets is typically unfeasible with the current
design of data collection tools. To address this challenge, we pro-
pose a self-supervised TNN based on Tucker decomposition
(Balažević et al., 2019) to reduce dependence on complete image
labels. Compared with conventional methods, the proposed model

not only effectively uses partial image information but also learns
from the intrinsic features of the images to generate precise pre-
dicted results on image gaps. Through this approach, we can
achieve effective filling of the borehole images even in the absence
of complete image labels.

Generating tensor-based representation for borehole
images

Tensors, as the higher-order extensions of matrices, are better
at capturing multidimensional data structures and relationships
(Zhang et al., 2022). FMI images, with their highly correlated pixels
and low-rank characteristics, would benefit from tensor-based
methods for filling gaps. To fully harness the multiway pixel cor-
relations and spatial structural similarities within FMI images, we
propose converting 2D borehole images into 3D tensors, enhancing
the modeling of inherent correlations and structures.
In this paper, lowercase and uppercase bold letters (e.g., x and X)

are used to denote vectors and matrices, and uppercase bold calli-
graphic letters (e.g., X ) represent higher-order tensors. For a tensor
X , XðpÞ denotes the mode-p unfolding matrix of the tensor, and
X ×p A represents the p-mode product of tensor X with matrix
A. The notation “∘” denotes the Hadamard product, k · kF denotes
the Frobenius norm, and AT represents the transpose of matrix A. In
addition, R and C are the real and complex fields.
We first illustrate our 3D tensor generation strategy with the ex-

ample in Figure 1, which incorporates data augmentation, cropping,
concatenation, and reversion. The original FMI borehole image,
being cylindrical, is converted into 2D images by unwarping it from
a chosen starting point. However, this starting point is selected arbi-
trarily, potentially leading to black borders that lose adjacent pixel
information, complicating the interpolation. Notably, the 2D image
is periodic, meaning these borders contain adjacent information
mirrored on the opposite side. We augment the image by duplicating
a section from the left side to the right to minimize boundary issues
from unwarping. If the original image is A0 ∈ RM×S, this process
results in an image of A ∈ RM×N , where N > S.
Then, we segment the image into overlapping small patches of size

I × J and sequentially stack them to form a 3D tensorY ∈ RI×J×K in
a left-to-right, top-to-bottom order. Figure 2a shows a standard crop-
ping strategy with a fixed stride. However, closer inspection reveals
that some patches have missing pixels exclusively on their outer
edges, necessitating value estimation beyond the available data range,
thus posing extrapolation challenges (Wang et al., 2019a). Extrapo-
lation is inherently more complex than interpolation because it proj-
ects known data trends into uncharted territory, often without
constraints, leading to potential error accumulation. We introduce
an ABDCA method that addresses this by identifying boundary pix-
els during cropping and ensuring that unknown pixels are centered
within the patches, as shown in Figure 2b. This strategy effectively
mitigates extrapolation inaccuracies, which introduce errors at open-
ended patch boundaries due to less context and compromise the fidel-
ity of image generation. Consequently, avoiding extrapolation enhan-
ces the overall quality and accuracy of image synthesis. As shown in
Figure 1, ABDCA adeptly traces the contours of missing gaps,
enhancing the reliability of the reconstructed image by avoiding
extrapolation. It is important to note that patches on the extreme left
are exceptions; however, this is inconsequential as we have already
augmented this data on the opposite side.
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In the ABDCA method, we only need to set the initial size
of small blocks manually. When a cropped small block has only
one side containing known pixels, the algorithm automatically
adjusts the block’s position until both sides of the cropped block
contain known pixels. Specifically, when the small block has
known pixels only on the right side, the algorithm shifts the
block’s position to the left, and vice versa, ensuring that each side
of the cropped block contains at least two columns of known pix-
els. If this condition is not fulfilled, a larger block size should be
selected.
After completion, we convert the 3D data back into 2D images.

We introduce the ASCR method, as shown in Figure 1. This
method reverses the cropping process, reconstructing the patches
into augmented 2D data. Building on the ABDCA method, which
augments images to preserve the boundary continuity, ASCR se-
lectively replaces this section to revert the filled data to their origi-
nal 2D form. This careful restoration ensures that the tensor
representation of 3D data is accurately reflected in the resulting
2D images.

Formulation of the tensor reconstruction problem

This section introduces the fundamental formulation of 3D tensor
completion. Let us consider an observed 3D tensor Y ∈ RI×J×K,
which contains elements that are either known or missing. The
complete data, without any missing elements, are denoted by
X ∈ RI×J×K . Their relationship can be expressed as

Y ¼ O ∘ X ; (1)

where “∘” signifies the Hadamard product and O is a binary
sampling operator defined as follows:

Oði;j;kÞ ¼
�
0 if Yði; j; kÞ is a missing entry

1 ifYði; j; kÞ is an observed entry
: (2)

Suppose one wants to recover the missing entries of Y. In that
case, it is essential to leverage prior knowledge about the complete
tensor X. Typically, tensor completion methods presuppose that X

Figure 2. A comparison of different cropping strategies. (a) Standard cropping with a fixed stride, wherein some patches have missing pixels
exclusively on their outer edges, and (b) the adaptive boundary-detection cropping. We repetitively slice a portion of the known pixels from the
original data to ensure that both sides of the cropped patches contain the known data, thereby avoiding challenging extrapolation and im-
proving the reliability of the filled image.

Figure 1. Workflow for filling image gaps with tensor representation. FMI data are initially unwarped to create a 2D image. This image is then
processed using the ABDCA method to form a tensor representation. Upon completion, the 3D tensor data are converted back into a 2D image
through the ASCR method.
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exhibits certain structural properties, such as the ability to be closely
approximated through decompositions, such as Tucker (Yokota
et al., 2018), TT, or TR. This implies that X can be represented
as DðϑÞ, where ϑ denotes the decomposition parameters or latent
factors. If we use a model to approximateX , the relationship can be
expressed as

X ¼ DðϑÞ: (3)

The tensor reconstruction problem can thus be formulated as an
optimization task expressed as

min
ϑ
kY −O ∘ DðϑÞk2F: (4)

This reformulation enables the use of the observedY to estimate the
model’s optimal parameters ϑ�, intending to minimize the Frobe-
nius norm of the difference between the observed tensor and the
Hadamard product of O with the approximated tensor DðϑÞ. Using
the learned model parameter ϑ�, the 3D tensor is reconstructed
by Dðϑ�Þ.

TNN-aided image completion algorithm

In recent years, deep neural networks (DNNs) have seen exten-
sive application in various fields, such as computer vision (He et al.,
2022), acoustic signal processing (Ozanich et al., 2020; Wolf et al.,
2020; Hua et al., 2023), and data reconstruction (Li et al., 2023a).
Known for their feature extraction capabilities, DNNs excel at
learning complex nonlinear representations. Coupling DNNs with
tensor representation has sparked significant interest, as it promises
to capture the inherent structure of multidimensional data better. In
this context, we enhance tensor representation by postulating that
3D tensors can be effectively represented within an L-layer neural
network, which can be mathematically formulated as

X ¼ DðϑÞ ¼ FθLðFθL−1ð · · · Fθ1ðGÞÞÞ; (5)

where FθLð⋅Þ represents the Lth layer function with parameters θi,
and G represents the core tensor. To comply with the notation of

equation 4, ϑ encompasses the set of all parameters, such as G
and fθigLi¼1. Building on a DNN representation model, our goal
is to reconstruct the 3D tensor by solving the following optimization
problem:

min
ϑ
kY −O ∘ FθLðFθL−1ð · · · Fθ1ðGÞÞÞk2F; (6)

where we aim to determine the optimal parameter set ϑ� that min-
imizes the discrepancy between the observed data Y and the recon-
structed data, thus addressing the missing data problem effectively.
Given the scarcity of complete borehole images for training, solv-

ing equation 6 is tricky for supervised learning. To effectively solve
the challenge of borehole image completion without constructing
training labels, a highly expressive model is required to capture
the intricate spatial distribution details. Drawing inspiration from re-
cent advances in tensor-based data completion and the powerful fea-
ture extraction capabilities of DNN, we extract the best of both
worlds to address the inherent challenges of limited borehole image
data availability. We propose a self-supervised TNN for borehole im-
age completion. As shown in Figure 3, this approach uses Tucker
decomposition method, renowned for its effectiveness with high-di-
mensional data, to design a network architecture. Each layer is mod-
eled after Tucker decomposition structure. This facilitates self-
supervised learning by encoding prior knowledge of low-rank struc-
tural correlations into the network architecture. Multiple layers of this
type harness the full potential of tensor-based models to capture the
inherent correlation between pixels within geologic features.
We update the network parameters by minimizing the loss func-

tion in equation 6, which evaluates the output image only at the
known pixel locations in the original borehole image. The generated
3D tensor Y is the learning target for the model. To enable self-
supervision, we configure the input G as a down-sampled version
of Y obtained through bilinear interpolation, directing the network
to generate complete images. The design of the network allows the
use of simple gradient descent algorithms, ensuring good results
from limited samples. After estimating ϑ�, the network can reason-
ably fill in the initial gaps in borehole images and generate complete
images without any discernible artifacts. In addition, we integrate
TV regularization to enhance the continuity of the filling results,

Figure 3. The TNN architecture for borehole image completion. The 3D tensor Y, constructed by ABDCA, serves as the learning target. The
input G is the core tensor, and we designated it as the downsampled Y after bilinear interpolation. After network training, the output yields the
filled borehole X . Similar to the conventional Tucker decomposition, the input G and factor matrices fWðpÞg3p¼1 are learnable parameters for
successful image completion.
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enabling the TNN network to reconstruct the intricate features of
borehole images accurately.

Integrating Tucker decomposition and neural network for FMI
image representation

Our study introduces a TNN combining tensor decomposition with
the robust representational abilities of DNNs to enhance FMI image
filling. At the heart of our lightweight model are tensor computations,
which capitalize on the structural correlations within geologic layers.
Concurrently, incorporating DNN architecture boosts the model’s
capability to detail the intricacies of rock formations.
Drawing on Tucker decomposition model (Balažević et al., 2019),

we can theoretically approximate a 3D tensor using tensors as follows:

X ≈ S ×1 Uð1Þ ×2 Uð2Þ ×3 Uð3Þ; (7)

where the columns of factor matrices fUðpÞgp¼1;2;3 serve as spatial
basis functions, and the core tensor S comprises weighting coeffi-
cients. This representation is valuable for extracting meaningful pat-
terns, such as subtle variations and structural information in 3D
tensors, with efficient storage and faster computations.
Inspired by this, we develop a tensor contraction layer (TCL)

(Kossaifi et al., 2020), as shown in Figure 4. TCL takes an input
tensor X l ∈ RRl

1
×Rl

2
×Rl

3 and produces an output through

X lþ1 ¼ ςðX l ×1 W
ð1Þ
l ×2 W

ð2Þ
l ×3 W

ð3Þ
l Þ; (8)

where the output tensor is X lþ1 ∈ RRlþ1
1

×Rlþ1
2

×Rlþ1
3

(Rlþ1
m > Rl

m;m ¼ 1; 2; 3). The factor matrix is represented by
WðiÞ

l ∈ RRlþ1
i ×Rl

i , and ςð•Þ is an activation function. Taking advan-
tage of Tucker decomposition, TCL exhibits high expressiveness
and conciseness, capturing multidimensional correlations in 3D
data with minimal trainable parameters.
Stacking multiple TCLs together forms the proposed TNN net-

work in Figure 3. Mathematically, this layering can be described as

XTNN ¼ DðϑÞ ¼ ςLð · · · ς1ðG ×1 W11 ×2 W12 ×3 W13Þ · · ·

×1 WL1 ×2 WL2 ×3 WL3Þ; (9)

where the core tensor G ∈ RR1×R2×R3 , fWðiÞ
l g3i¼1 are factor matrices

for all layers, and L is the total number of layers. These TCLs trans-
form the input tensor G into the output tensorX through sequential

tensor contraction operations coupled with a nonlinear activation
function ςlð·Þ after each layer l. The activation function selection
is tailored to the data, with common choices being the rectified lin-
ear unit, sigmoid, and tanh (Karlik and Olgac, 2011). Accordingly,
the proposed TNN network can effectively capture both linear and
nonlinear features across multiple dimensions, leading to better-
filled borehole images.

TNN-aided reconstruction algorithm

Regularization terms integrate additional prior information,
thereby boosting performance. Based on the proposed TNN model,
we incorporate an extra regularization term, and inserting equation 9
into equation 6 yields the following optimization problem for bore-
hole image reconstruction:

min
ϑ
kY −O ∘ XTNNk2F þ λRðXTNNÞ; (10)

where ϑ ¼ fG;Wð1Þ
l ;Wð2Þ

l ;Wð3Þ
l gLl¼1 denotes the set of trainable

parameters, RðXÞ signifies a regularization term, and λ is a hyper-
parameter that balances data fitting and the regularization term. If
λ ¼ 0, the regularization term becomes ineffective, reverting to the
original formula in equation 6. Choosing different regularization
terms can incorporate various types of prior structural information.
In this study, we adopt a classic anisotropic TV regularization
(Rudin et al., 1992) represented by

RðXÞ ¼
X
i;j;k

ðjX iþ1;j;k −X i;j;kj þ jX i;jþ1;k −X i;j;kj

þ jX i;j;kþ1 −X i;j;kjÞ: (11)

Gradient descent, a fundamental first-order optimization method,
is widely used in training networks due to its straightforwardness.
The model parameters set ϑ ¼ fG;Wð1Þ

l ;Wð2Þ
l ;Wð3Þ

l gLl¼1 and is up-
dated using the gradient descent method (Nesterov, 2013), with the
update rule

ϑkþ1 ¼ ϑk − gk∇ϑfðϑkÞ; (12)

where ϑk and ϑkþ1 are the model parameters at iterations k and
kþ 1, respectively, and gk is the corresponding learning rate.
Advanced optimization techniques such as adaptive gradient algo-
rithm, root-mean-squared propagation, and Adam are recom-

Figure 4. Illustration of single-layer TCLs, where X l is the input,
X lþ1 is the output, fWðpÞ

l g3p¼1 is the factor matrices, and ςð•Þ is the
activation function.

Algorithm 1: TNN-aided borehole image completion algorithm.

Input: The generated tensor Y ∈ RI×J×K, the core tensor
G ∈ RR1×R2×R3 , the mask tensor O ∈ RI×J×K, and the iteration
number K.

Parameter: λ, gk
Output: Reconstruction X
1: Initialize: k ¼ 0, ϑ

2: while k < K do

3: Calculate the gradients ∇ϑfðϑkÞ
4: Update ϑ via ϑkþ1←gk∇ϑfðϑkÞ
5: k ¼ kþ 1

6: end while

7: Return X ¼ DðϑKÞ
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mended. These methods, especially effective for large data sets (Fan
et al., 2014), can further enhance algorithmic performance (Ruder,
2016). We summarize the proposed algorithm in Algorithm 1.
Although the core tensor G serves as the algorithm’s input, it re-
mains a trainable model parameter. In addition, the factor matrices
fWð1Þ

l ;Wð2Þ
l ;Wð3Þ

l gLl¼1 mentioned previously are model training
parameters and are not inputs to the algorithm.

RESULTS

In this section, we present the results obtained with field drilling
images for gap filling, intending to highlight the exceptional per-
formance of the proposed TNN in addressing gap-filling tasks.
We conducted multiple experiments covering various conditions,
such as scenarios with and without real ground data, experiments
with and without preinputting core tensors, and interpolation ex-
periments on large fractures. In addition, we conducted a compar-
ative analysis of our method with three state-of-the-art deep-
learning approaches, fully connected tensor decomposition and ten-
sor completion (FCTN-TC), (Zheng et al., 2021), DIP (Ulyanov
et al., 2018), and deep generative prior (DGP) (Pan et al., 2021).

Experimental settings

In this section, we applied the TNN network to fill in the gaps in
the drilling images. Before training, we used the ABDCA method
mentioned previously to expand the image A0 ∈ R160×313, trans-
forming it into an image A ∈ R160×400, and then performed adaptive
cropping to generate the 3D tensor Y ∈ R40×40×40.
We input the preprocessed 3D tensor Y ∈ R40×40×40 into the TNN

network to obtain complete 3D drilling data X ∈ R40×40×40. Then,
we applied the ASCR method mentioned previously to convert the
3D data into 2D data, thus obtaining the complete drilling image. To
demonstrate the feasibility of the TNN network on scarce data, we
selected a typical on-site example. As shown in Figure 5a, it mainly
consists of parallel sandstone layers.
Due to the lack of ground-truth data in the measured FMI images

and to obtain a more robust quantitative comparison of the different
methods, we initially filled the small gaps in the resistivity images
using bilinear interpolation, as shown in Figure 5b, to serve as the
ground-truth data. Subsequently, a portion of the image was desig-
nated as invisible, as shown in Figure 5c, to serve as the input data
for evaluating the filling performance.
The filling performance of the different methods is evaluated us-

ing the root-mean-square error (RMSE), defined by the formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XI

i¼1

XJ
j¼1

XK
k¼1

ðX ijk − ~X ijkÞ2
vuut ; (13)

where X represents the ground-truth data, ~X is the filled data, and
T ¼ I × J × K represents the total number of data points.
The algorithm used TensorFlow’s automatic differentiation

mechanism for gradient computation. To optimize the proposed
TNN model, specifically, we used the Adam optimizer for model
optimization, setting the learning rate to 0.005 and performing
15,000 iterations.

Comparison of different TNN depths

To assess recoverability and gain a better understanding of the
proposed model, we designed three different configurations of
the TNN models (as shown in Table 1). These models were trained
and tested separately for scenarios with and without designating the
inputting core tensors. It is important to note that for models without
core tensor inputs, the core tensors are randomly generated. In con-
trast, for models with core tensor inputs, the core tensors are derived
by downsampling the original 3D data to the corresponding size
using maximum pooling. The results are shown in Figure 6.
The results show that all three TNN networks demonstrate sat-

isfactory filling performances. In the absence of core tensors, quan-
titative calculations indicate that the RMSE values for the three
TNN networks are 0.0197, 0.0210, and 0.0236, respectively. This
suggests that deeper networks perform better in filling images when
core tensors are not specified from the downsampled Y. This im-
provement can be attributed to the greater number of parameters in
deeper networks, allowing the model to fill the data more effec-
tively. By increasing the network depth, the model can learn more
complex image features, thereby enhancing filling performance.

Figure 5. (a) A typical field image with gaps, primarily consisting of parallel sandstone layers, (b) ground-truth data are obtained by filling
small gaps using bilinear interpolation, and (c) input data are obtained by decimating the former ground-truth data. These manually removed
regions are used for comparison. All images have a size of 160 by 313 pixels, with a depth discretization of 2.54 mm (0.1 in.) per pixel and an
azimuthal discretization of 1.125° per pixel.

Table 1. Different configurations of the TNN models.

Method
Number of layers in

TNN Dimensionality

TNN1 4 (5,5,5) (10,10,10) (20,20,20)
(40,40,40)

TNN2 3 (10,10,10) (20,20,20) (40,40,40)

TNN3 2 (20,20,20) (40,40,40)
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When the core tensor is provided, deeper TNN networks perform
slightly better, with RMSE values of 0.0183, 0.0198, and 0.0231.
The improved filling performance, compared with the same
networks without the core tensor, is evident from the lower RMSE

values. This finding confirms the superior filling performance of the
TNN networks with the core tensor. The input of core tensors helps
the network better capture the data features, enhancing the accuracy
and consistency of image inpainting and demonstrating their impor-
tance in complex image processing tasks.
Without using TV regularization, the network performance de-

clines, regardless of whether core tensors are provided. This result
clearly highlights the crucial role of TV regularization in maintain-
ing and enhancing network performance. Specifically, TV regulari-
zation improves network performance by suppressing noise and
preserving the overall structure of the image, demonstrating its
value in processing borehole image data.
The preceding experiments demonstrate that generating core ten-

sors and using TV regularization can better guide the reconstruction
process, producing more accurate and reliable results. Indeed, this
observation underscores the critical role of using existing informa-
tion to improve the accuracy and consistency of the interpolation
process, thereby enhancing the final results.
Next, we applied the aforementioned TNN1-core methods to

fill in the unknown pixels, and the results are shown in Figure 7.
The results demonstrate that these methods effectively recover the
missing regions. In addition, the TNN1-core still stands out for its
remarkable recovery performance. The image filled by the TNN1-
core retains the essential geologic features and textures effectively
and exhibits high visual quality, as indicated by the blue arrows.
Furthermore, good preservation of lateral consistency with the sur-
rounding known features is observed. This observation aligns with
our previous conclusions, further validating the superiority of the
TNN1-core method in filling unknown pixels.
To provide a more comprehensive comparison, we used the blind/

referenceless image spatial quality evaluator (BRISQUE) (Mittal
et al., 2012) metric to quantitatively assess the
filling capabilities of the models, as shown in
Table 2. BRISQUE is a no-reference image qual-
ity assessment method that effectively measures
the quality of an image. The evaluation results
using this metric revealed that, consistent with
previous conclusions, the TNN1-core method
demonstrates superior performance in filling un-
known pixels. Specifically, the BRISQUE metric
indicates that the TNN1 method excels in han-
dling complex image structures and detail resto-
ration. This further validates the reliability and
effectiveness of the TNN1-core method, proving
its potential and practical value in enhancing im-
age filling quality.

Comparison of different deep-learning
methods

To comprehensively evaluate our method, we
conducted quantitative comparisons with three
other methods: FCTN-TC (Zheng et al., 2021),
DIP (Ulyanov et al., 2018), and DGP (Pan
et al., 2021). To ensure fair comparisons, we pre-
processed and normalized the input images for
the DIP and DGP methods, uniformly resizing
them to 256 × 256 normalized images. During
this process, we set the number of iterations
for DIP to 6000 and used a publicly available

Figure 6. The filling results of different TNNmethods. The “Basic”
method does not have a preinput core tensor, and its core tensor is
randomly generated. In contrast, the “Core” method’s core tensor is
derived from the downsampled Y.

Figure 7. The filling results of different TNN methods. (a) The original image, (b–d) fill-
ing results without inputting the core tensor, and (e–g) filling results by inputting the core
tensor. As indicated by the blue arrows, the TNN1-core method performs better in restor-
ing the details. All images have a size of 160 by 313 pixels, with a depth discretization of
2.54 mm (0.1 in.) per pixel and an azimuthal discretization of 1.125° per pixel.

Table 2. Comparison of BRISQUE scores for different TNN
models.

Type Core Without core

TNN1 29.2538 30.1256

TNN2 30.1562 31.1263

TNN3 31.5416 32.5674
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pretrained model for DGP, maintaining the initial restoration con-
figuration. Similarly, we cropped and concatenated the same images
into 4D data as the input for FCTN-TC, using the publicly available
FCTN-TC model and maintaining the initial recovery configura-
tion. For our method, we selected TNN1-core as a representative
of our method for comparative analysis.
To visually compare the filling effects, we present the filling re-

sults of images with ground-truth data for the four methods on two
different structures, as shown in Figures 8 and 9. Although the DIP
method produces relatively smooth images, it significantly lacks de-
tail, appearing overly blurry. The DGP and FCTN-TC show struc-
tures in detail but exhibit inaccuracies, which diminish the overall
image quality. As indicated by the red boxes, the FCTN-TC, DIP,
and DGP methods produce inaccurate results and are less effective
in recovering details compared with the TNN method.
In comparison, the TNN method exhibits superior performance

across various aspects. First, the TNN method not only retains more
image details but also produces more reliable filling results with
lower distortion. In addition, the TNN method demonstrates higher
accuracy in handling complex image structures, ensuring a high de-
gree of consistency between the filled areas and
the surrounding known regions. These observa-
tions further validate the superiority of the TNN
method in the image-filling process, excelling
in reducing errors and maintaining the integrity
of image structures.
To provide a more objective and comprehensive

evaluation, we introduced multiple evaluation met-
rics, such as structural similarity index (SSIM),
peak signal-to-noise ratio (PSNR), mean-squared
error (MSE), and computational time. Compared
with the previous comparison based solely on
RMSE, adopting multiple metrics allows for a
more thorough assessment of each method’s
strengths and weaknesses across different aspects,
thus yielding a more accurate reflection of their ac-
tual performance. Table 3 shows the comparison
results of these metrics. It is noteworthy that our
method outperforms the FCTN-TC, DGP, and
DIP methods across all metrics, demonstrating
its superiority.
For example, in terms of SSIM, our method

shows greater similarity, indicating excellent
performance in maintaining image structure integ-
rity. Regarding PSNR, our method achieves higher
values, suggesting better performance in noise
suppression and signal fidelity. The reduction
in MSE also highlights our method’s superiority
in minimizing image errors. Furthermore, our
method is the most efficient method in terms of
processing time. Notably, we evaluated these met-
rics only within the masked regions filled by the
methods to ensure the accuracy and comparability
of the evaluation results. This comparison provides
a comprehensive assessment of our method’s per-
formance, thoroughly validating its effectiveness.
Then, we applied the aforementioned methods

to fill in the unknown pixels. By feeding the input
images into the four methods, we obtained the fill-

ing images from the different methods, as shown in Figure 10. When
handling images with simple sinusoidal structures, all four methods
performed adequately in filling. However, in terms of detail, the
FCTN-TC and DGP methods introduced noticeable noise, as indi-
cated by the blue arrows, whereas regions generated by the DIP
method lacked significant detailed features, failing to recover clear
textures. The differences among the methods became more pro-
nounced when dealing with more complex structures, as indicated

Figure 8. The filling results of different methods. (a) The ground-truth data, (b) sampled
data, (c) TNN, (d) FCTN-TC, (e) DIP, and (f) DGP. As indicated by the red boxes, the
FCTN-TC, DIP, and DGP methods produce inaccurate results and are less effective in
recovering the details compared with the TNN method.

Figure 9. The filling results of different methods. (a) The ground-truth data, (b) sampled
data, (c) TNN, (d) FCTN-TC, (e) DIP, and (f) DGP. As indicated by the red boxes, the
FCTN-TC, DIP, and DGP methods produce inaccurate results and are less effective in
recovering the details compared with the TNN method.

Table 3. The evaluation metrics of different methods.

Type TNN FCTN-TC DIP DGP

SSIM↑ 0.9519 0.9015 0.9312 0.8459

PSNR↑ 18.2985 16.1561 15.4524 12.4515

MSE↓ 0.0148 0.0346 0.0285 0.0571

TIME↓ 23 s 354 s 278 s 299 s

Upward arrow indicates that higher value is better, while downward arrow indicates
that lower value is better.
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by the red boxes. FCTN-TC showed significant discrepancies from
the original image data, resulting in inaccurate filling. Although the
regions generated by the DIP method were smooth, they also lacked
detailed features, struggling to restore texture details within complex
structures. The DGP method performed poorly in recovering the
sinusoidal structures of the images, failing to maintain the desired
lateral consistency. In contrast, our method demonstrated significant
advantages in all aspects. Our method efficiently restored reasonable
and detailed features while maintaining satisfactory lateral consis-
tency with the surrounding known features, resulting in more realistic
filling results.
To better compare the filling effects of the different methods, we

used the BRISQUE metric for the quantitative assessment of the
models’ filling capabilities, as shown in Table 4. The evaluation
results were consistent with our previous conclusions, further val-
idating the superiority of the TNN method in filling unknown pix-
els. Specifically, the BRISQUE metric indicated that the TNN
method outperformed the other methods across all evaluation met-
rics, highlighting its advantages in maintaining image structure in-
tegrity and detail restoration. Through a quantitative evaluation
using the BRISQUE metric, we obtained a more comprehensive
and objective comparison of the filling effects of different methods.
This comprehensive evaluation method provided clear data support,
enabling us to more accurately understand the superiority of the
TNN method in handling complex image filling tasks. The results
demonstrate that the TNN method not only excels in visual effects
but also outperforms the FCTN-TC, DIP, and DGP methods across
multiple technical metrics.

Filling large fractures with different deep-learning
methods

In the final stage of the experiment, we tested the ability of
the TNN method to fill in visible high-angle fractures, as shown
in Figure 11. These large fractures may result from changes in under-
ground pressure, tectonic movements, or other geologic activities
causing rock layer breakage. Filling large-angle fractures is crucial
for geologic exploration. Using the same experimental parameters
as previously, we divided the selected 480 × 313 image with large
fractures into three equal parts vertically. After processing these parts
with the ABDCAmethod, they were transformed into three tensors of
size (40,40,40) and individually input into the network. Finally, they
were concatenated together using the ASCRmethod. The application
of four different methods to fill the large fracture areas produced
impressive results. Consistent with previous comparisons, the filling
effect of the DIP method appeared overly smooth, lacking a distinct
presentation of detailed features, as shown in the red boxes. In con-
trast, although the FCTN-TC and DGP methods performed reason-
ably well in filling large fractures, they still exhibited limitations. For
instance, DGP struggled with maintaining good connectivity in han-
dling large fractures, whereas the FCTN-TC method could introduce
some noise, as indicated by the blue arrows, which affects the filling
quality. In comparison, our method was able to restore reasonable and
detailed features while maintaining lateral consistency with the sur-
rounding known features.
To further validate our findings, we introduced the BRISQUE

metric for comparison, as shown in Table 5. The BRISQUE scores
reaffirmed our previous conclusions, further validating the superior
performance of the TNN method in filling large fractures.

Figure 10. The filling results of different methods on three different structures. (a) The original image, (b) TNN, (c) FCTN-TC, (d) DIP, and
(e) DGP. The DGP method introduces discontinuities in the sinusoidal structures, as highlighted by the red boxes. Similarly, the FCTN-TC
method also exhibits discontinuities in the sinusoidal structures, particularly in the subpart labeled III. In addition, the DIP method causes
blurring of the details. The blue arrows indicate the noise generated by the FCTN-TC and DGP methods.

Table 4. Comparison of BRISQUE scores for different methods.

Data TNN FCTN-TC DIP DGP

I↓ 35.2656 40.4997 37.2513 40.5752

II↓ 28.9500 31.4227 32.2309 34.6354

III↓ 29.2538 31.2935 32.2819 39.5199

Downward arrow indicates that a lower value is better.

Table 5. Comparison of BRISQUE scores for filling large
fracture images using different methods.

Type TNN FCTN-TC DIP DGP

BRISQUE↓ 32.2372 35.5407 35.6940 36.8455

Downward arrow indicates that a lower value is better.
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The filled images demonstrate the excellent
performance of the TNN method in handling
complex geologic structures and successfully re-
storing the geologic features and texture details
around the large crack. Meanwhile, the filled im-
ages exhibit more coherent and realistic geologic
structures, maintaining good consistency with
the surrounding known areas. This result further
validates the TNN method’s practicality and ef-
fectiveness in drilling image filling. By showcas-
ing the outstanding performance of the TNN
method in filling large cracks, we aim to provide
deeper insights into the immense potential of this
method in solving real-world problems, offering
more inspiration and opportunities for the devel-
opment of the geologic image processing field.

DISCUSSION

Why are high-order pixel correlations
important?

To compare the impact of the 3D tensors ver-
sus the 2D data inputs on filling performance, we
attempted to directly input the 2D data into the
network, as shown in Figure 12. The restoration
performance of the pure 2D blocks was inferior
to that of the 3D data, as shown in the red boxes,
likely because 3D data enhance the ability to use
spatial correlations. Our findings indicate that in-
terpolating 3D tensors is necessary and effective
in our study. This underscores the importance
and effectiveness of interpolating 3D tensors in
complex image processing tasks.

Limitations and future work

Although the TNN method has shown promis-
ing results in filling borehole images, it still has sev-
eral limitations. First, although the TNN method
can fill in the missing parts of an image, it struggles
when the missing areas are large. Due to the reduc-
tion in known pixels, the completion ability of the
TNN networks will decrease. Specifically, when
the missing region exceeds the network’s capacity,
the remaining known pixel information is insuffi-
cient to support accurate reconstruction, leading
to unsatisfactory filling results.
To further explore this issue, we introduced ad-

ditional gaps into the original borehole images.
These gaps varied in size: 5 pixels, 10 pixels,
and 15 pixels, as shown in Figure 13. Through
experimentation, we observed a gradual decrease
in the effectiveness of image restoration as these
newly introduced gap sizes increased. This sug-
gests that the size of the missing areas signifi-
cantly influences the outcome of the image
restoration; larger gaps make the restoration proc-
ess more challenging, thereby leading to poorer
recovery outcomes.

Figure 11. The result of filling large fractures using different methods. (a) The original
image, (b) TNN, (c) FCTN-TC, (d) DIP, and (e) DGP. The red boxes highlight our supe-
rior performance in detail preservation, whereas the other methods blur these structures.
The blue arrows indicate the noise introduced by the FCTN-TC and DGP methods. All
images have a size of 480 by 313 pixels, with a depth discretization of 2.54 mm (0.1 in.)
per pixel and an azimuthal discretization of 1.125° per pixel.

Figure 12. Interpolation results obtained from TNN with different input data on large
fracture images. (a) The original image, (b) interpolation results obtained by the TNN
method with 3D tensor input, and (c) interpolation results obtained by the TNN method
with 2D input. The red box highlights how our method recovers more details by ex-
ploiting high-order structural information.
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The second limitation is that all previous TNN methods used input
data of fixed size (40,40,40) obtained by the ABDCA method. This
data structure can maintain the TNN network’s performance to some
extent. However, when we attempt to use larger 3D data, the TNN
network fails to achieve the same high-quality results. We suspect this
is because as the data size increases, its low-rank property changes,
resulting in decreased performance when handling high-dimensional
data. This indicates that in order to effectively handle larger data sets,
more complex tensor structures or more detailed parameter adjust-
ments are needed. Future work might explore implementing TT
(Oseledets, 2011) or TR networks (Zhao et al., 2016; Wang et al.,
2018) to enhance our model’s capabilities.
The third point is that FMI images inherently have a 40% data

loss. Although the ABDCA method can effectively avoid extrapo-
lation, it falls short when the missing areas in the middle of the FMI
images are larger. This may reduce the accuracy and reliability of
image filling. Therefore, for FMI images with large missing areas,
the existing TNN and ABDCA methods may require advanced pre-
processing to handle these complex situations better.
Despite the TNN method demonstrating good performance in

borehole image filling, further research and improvement are needed
to address the previously mentioned limitations, thereby enhancing
its performance and adaptability for large-scale applications.

CONCLUSION

We have introduced a novel framework for borehole image in-
painting using a self-supervised TNN based on Tucker decomposi-
tion. Our approach reduces dependency on fully annotated images,
effectively filling image gaps even with limited training data. By

leveraging tensor-based representations and DNNs
combined with anisotropic TV regularization, we
achieve accurate reconstruction of complex fea-
tures in borehole images. Experimental results
demonstrate the effectiveness of our method in
generating complete images without significant ar-
tifacts, promising advancements in borehole imag-
ing and contributing to a better understanding of
underground geologic structures.
Although Tucker decomposition was the most

suitable approach for this study, we recognize that
TT and TR decompositions have demonstrated
greater effectiveness in traditional decomposition
scenarios, particularly for handling higher-dimen-
sional tensors. These methods present promising
directions for future research, as they could en-
hance adaptability and computational efficiency
when dealing with even larger data sets. Although
we know these alternative methods for tensor rep-
resentation, our focus in this paper is on applying
a single method — Tucker decomposition — to
address a practical geophysical problem. We in-
tended not to compare Tucker decomposition with
the range of available methods in the literature for
decomposing multilinear arrays but to highlight
the practicality of the adopted decomposition in
this specific context.
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