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5-D Seismic Data Interpolation by
Continuous Representation
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Abstract— How to represent a seismic wavefield? Tradition-
ally, while seismic wavefields are conceptualized continuously,
acquisition geometries capture seismic data discretely using 2-D
spatial coordinates. Motivated by recent advances in neural
radiance fields for 3-D reconstruction through implicit neural
representation, we introduce implicit seismic representation (ISR)
for 5-D seismic data interpolation. This approach processes
seismic data coordinates as inputs and outputs amplitude values
at those coordinates with multilayer perceptrons (MLPs). Due
to the continuous nature of the coordinates, ISR can achieve
representations at any desired resolution and is easily scalable
to a 5-D representation. To achieve a continuous representation
of seismic data, we employ a self-supervised learning strategy
to train the ISR on observed data. The trained network is then
capable of interpolating missing seismic traces by querying every
coordinate of the missing data. Our approach’s effectiveness is
validated through synthetic and field data experiments, show-
casing superior reconstruction abilities. Our findings highlight
the potential of the implicit neural representation framework to
achieve precise parametrization of continuous seismic wavefields,
marking a significant advancement in seismic data processing and
analysis.

Index Terms— 5-D seismic reconstruction, continuous
wavefield representation, implicit neural representations,
parametrization, self-supervised learning.

I. INTRODUCTION

SEISMIC reconstruction algorithms recover missing traces
due to difficult field operations and resource constraints,

aiming to simultaneously interpolate and denoise seismic data.
They play an indispensable and challenging role in improving
the data quality for subsequent processing and interpretation,
such denoising [1], [2], [3], resolution enhancement [4], [5],
and fault detection [6]. Consequently, seismic reconstruction
is garnering increased attention.
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Seismic reconstruction is a classic example of an inverse
problem characterized by its underdetermined nature, where
multiple outputs could correspond to a single input. Tradi-
tional interpolation techniques use mathematical models to
estimate missing values, leveraging structural relationships
among the existing data points. These methods typically rely
on assumptions, such as predictability, sparsity, and low rank.
Predictability for linear events is a common approach, exem-
plified by the prediction error filter in the f -x domain [7], [8],
[9], t-x [10] domain, and the f -k domain [11]. While effective,
these methods necessitate manual tuning of parameters, such
as filter length and window size, to align with the assumption
of linear events. To accommodate more complex structures,
certain transformations act as dictionaries to more closely
match seismic data. Improved matching results in sparse
coefficients within specific transformation domains, such as
Radon [12], [13], [14], Shearlet [15], Seislet [16], [17], and
curvelet [18], [19], [20] domains. By enforcing sparsity in
the transform domain, they gradually recover missing traces
that conform to predefined structures through optimization
iterations. However, these methods can be computationally
demanding and highly sensitive to threshold parameter selec-
tion, making them challenging for high-dimensional problems.
Rank-reduction methods presuppose that incomplete data and
noise elevate the rank of seismic data. According to different
rank definitions, they can be categorized into matrix-based and
tensor-based approaches. Tensor-based methods often surpass
matrix-based ones by exploiting more coherent structures
across various dimensions. This demonstrates the advantage
of effectively utilizing all physical dimensions of the original
seismic wavefield, thereby encouraging scholars to pursue
further advancements in this direction.

Due to memory constraints, conventional methods for pro-
cessing large 5-D datasets typically involve segmenting the
data into smaller patches and then stitching them back together
after processing. They effectively capture local features within
each sliding patch. However, it has a significant drawback:
the inability to model global structural similarities across
patches. Since each segment is processed in isolation without
interpatch communication, multidimensional consistency and
reconstruction accuracy may be compromised.

Conversely, supervised deep learning, a recent area of
intense interest, excels at characterizing global features despite
cropped training patches. It offers a more adaptive interpola-
tion strategy. The critical difference lies in the loss function,
which encompasses all patches, enabling the model to learn

1558-0644 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on November 12,2024 at 00:03:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5553-2379
https://orcid.org/0009-0009-0444-2010
https://orcid.org/0000-0002-2044-2143
https://orcid.org/0000-0002-6151-8941
https://orcid.org/0000-0001-5396-985X
https://orcid.org/0000-0003-0696-337X


5922211 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

complex nonlinear relationships incrementally from a compre-
hensive training dataset [21]. Furthermore, supervised learning
circumvents the arduous task of designing handcrafted priors
by employing end-to-end training, which allows for a more
flexible learning process. Consequently, numerous supervised
deep learning models have been applied to seismic data
reconstruction [22], [23], [24], [25]. However, a significant
challenge for supervised learning is constructing high-quality
labels, as acquiring a large and diverse training dataset is
challenging and labor-intensive. Using conventional methods
to generate labels is effective but may result in a network
whose performance mirrors the labels, without clear supe-
riority. Labels created through forward modeling are often
highly accurate but require geological expertise. Inaccurate
geological knowledge may lead to generalization issues when
applied to real-world data. Moreover, most supervised methods
operate in 2-D or 3-D due to GPU memory limitations, leaving
ample room for direct 5-D modeling to enhance performance.
One promising approach to capturing the inherent structure
of 5-D data involves constructing a pseudo-5-D convolution
by cascading a 3-D convolution operator with a 2-D convolu-
tion [26]. Despite this advancement, the approach still suffers
from high-computational costs, which limits its applicability
to large-scale 5-D prestack datasets in practical scenarios.

To mitigate label restrictions, researchers seek solutions
from self-supervised methods. In contrast to conventional tech-
niques that rely on predetermined formulas, self-supervised
deep learning methods adapt dynamically to the unique fea-
tures of each dataset by exploiting the inherent structure
and patterns, potentially leading to superior reconstruction
quality. Methods based on deep image priors have been
successfully employed for seismic interpolation [27], [28].
However, they are not without their challenges, such as
instability due to early stopping and the risk of overfitting
to noise or artifacts. This instability further impedes its ability
to integrate seamlessly with various regularization techniques,
thereby reducing its adaptability. Masked modeling [29],
a technique in self-supervised learning, has also been adapted
for seismic interpolation [30], [31], [32]. While promising,
their effectiveness depends heavily on data quality. This is
a concern for 5-D prestack seismic data, which is often
contaminated by various types of noise. In addition, the high
rate of missing traces in raw 5-D seismic datasets hinders
us from further decimating the data to create paired training
sets. The computationally intensive nature of training and
deploying high-dimensional networks remains a significant
barrier, preventing current unsupervised methods from scaling
to higher dimensions. Therefore, there is a pressing need for
an innovative interpolation method capable of harnessing 5-D
features in a global context. To be viable, such a method
must not rely on labeled data. Moreover, considering the
sheer volume of 5-D prestack data, the method should employ
a lightweight network architecture to address computational
challenges. Ideally, it would also incorporate noise attenuation
capabilities, adding further value to the technique.

Continuous neural representations have recently emerged
as a powerful and flexible alternative to classical discretized
signal representations. One notable example is the neural

radiance field [33], [34], [35], [36], which utilizes continuous
representation to achieve remarkable progress in 3-D scene
reconstruction. This success prompts an intriguing inquiry:
“can continuous representation directly interpolate 5-D data?”
To address this, we leverage the adaptability of self-supervised
learning to propose an effective and efficient method for 5-D
seismic data interpolation, namely, implicit seismic representa-
tion (ISR). Our approach integrates continuous representation
into 5-D data interpolation, achieving superior performance.
Specifically, the ISR network takes any 5-D coordinates as
input and outputs the corresponding amplitude value. Net-
work training aims to induce the neural network to overfit
a specific dataset, learning its intrinsic properties. In essence,
ISR embeds the 5-D continuous wavefield into the network
weights. Due to its pixelwise training strategy, ISR exhibits
efficient GPU memory usage compared with the existing con-
volutional networks. During the inference phase, the network
is queried at each 5-D coordinate requiring interpolation,
thereby achieving 5-D seismic reconstruction. We evaluate
the effectiveness of ISR using synthetic data and demonstrate
the robustness of our model with a corrupted field dataset.
These findings underscore ISR’s potential as an innovative
solution for 5-D seismic data interpolation, paving the way
for more precise and efficient continuous seismic wavefield
representation.

The article is structured as follows. Section II outlines
the 5-D interpolation task and details the implicit regular-
ization for continuous representation. Subsequently, the ISR
method for 5-D seismic interpolation is introduced. Section III
showcases the reconstruction results from experiments on syn-
thetic and field seismic data, demonstrating the effectiveness
of the proposed technique. Section IV discusses limitations
and future directions. Finally, the conclusion is presented in
Section V.

II. METHOD

A. 5-D Interpolation Formulation

Five-dimensional seismic data acquisition enhances tradi-
tional seismic data acquisition by incorporating two additional
dimensions—often offset and azimuth, enabling a more
detailed capture of subsurface structures [37]. This approach
provides a more comprehensive understanding of the seismic
wavefield by capturing seismic response variations across
different azimuths and offsets. The resulting 5-D dataset offers
profound insights into the subsurface through improved spatial
sampling, which leads to more accurate reservoir identification
and property evaluation. However, reconstructing 5-D seismic
data presents a considerable challenge, primarily due to the
vast amount of data required for precise representation of
subsurface structures. The wide-azimuth nature of the data
necessitates an interpolation approach that concurrently uti-
lizes information from all spatial dimensions, as sampling
along any specific subset of the four spatial dimensions is
typically sparse. Consequently, sophisticated techniques are
essential to handle the extensive data volume and effectively
distill valuable insights.

As advanced linear algebra, tensors provide a discrete
representation for received seismic wavefields. They align
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Fig. 1. Illustration of seismic exploration for 5-D data. (a) Seismic source
and receiver layouts. (b) Schematics for data binning. (c) Three-dimensional
subset of binned data. (d) Coordinate system used for describing the 5-D
seismic data.

seismic data into a structured format with regularly spaced
sampling grids. However, achieving this presents significant
challenges in 5-D seismic acquisition due to the commonly
irregular spatial arrangement of sources and receivers. Fig. 1(a)
exemplifies a distribution of source and receiver. Each source
is activated in sequence, with various receivers capturing the
emitted signals simultaneously. Repeated activation facilitates
multiple coverage of the work area, increasing data accuracy.
To reconcile the irregularly sampled data with tensor represen-
tation requirements, a binning process is employed, as depicted
in Fig. 1(b). This critical step groups seismic traces into dis-
tinct hypercubes based on common midpoint (CMP) positions.
Subsequently, the traces within each hypercube are averaged
to yield a single representative trace. Binned data often exhibit
significant missing traces, a challenge graphically illustrated in
Fig. 1(c), underscoring the imperative for sophisticated data
interpolation techniques. Following the binning procedure, the
seismic dataset is transformed into a poststack format via the
CMP gather stacking method. This technique amalgamates
multiple CMP records corresponding to identical midpoint
locations, thereby enhancing data quality. The final stages
encompass additional processing and migration to improve the
imaging of underground geological structures.

Various data types emerge accordingly during the exten-
sive process of seismic data manipulation. For instance,
entries in the observed source–receiver coordinates can
be represented as the tensor Dobs(t, sx , sy, rx , ry), where
(sx , sy, rx , ry) delineates the spatial coordinates of sources
and receivers. An alternative sorting schema denotes the
entries as Dobs(t, mx , m y, hx , h y), t denotes time, mx and
m y indicate the inline and crossline midpoint coordinates,

and hx and h y represent inline and crossline offsets.
In yet another arrangement, the data may be ordered as
Dobs(t, mx , m y, |h|, α), with |h| signifying the offset distance
and α representing the azimuth. Without loss of generality,
we state that v represents the coordinates of a single data
point within our source–receiver coordinates. Specifically, v =

[v1, v2, v3, v4, v5]
T is a single 5-D coordinate sample selected

from the regular coordinate set V . This general designation
simplifies notations and provides a fundamental basis for
further analysis across various types of seismic data.

With the above mathematical notations, we can describe the
relationship between the observed decimated data Dobs and the
corresponding complete data Z as follows:

Dobs
= P(Z) (1)

where P is a sampling operator that retains values at coor-
dinates v with observed data and assigns a zero elsewhere.
Building on this, we define a cost function to reconstruct the
unknown data

min E
(
Dobs,P(Z)

)
+ αR(Z) (2)

where E(·, ·) is a data fitting metric, which ensures that
the model accurately reflects Z and aligns closely with the
observed data. The regularization term R(Z) is added to the
loss function to prevent overfitting by penalizing complex
models. It encourages the model to be simpler, which can lead
to better generalization on unseen data. Note that regulariza-
tion can be explicit, like ℓ1 and ℓ2 regularization, or implicit,
like early stopping, data augmentation, and architecture adjust-
ments. The coefficient α serves to balance the data fitting
metric with the regularization term. An overemphasis on data
fitting leads to overfitting, causing the model to learn noise
rather than the underlying distribution of desired reflections.
On the other hand, prioritizing regularization excessively may
result in underfitting, making the model too simple to capture
the complexity of the useful data. Thus, fine-tuning α is
essential for achieving an accurate and generalizable model.

B.Continuous Neural Representations as an Implicit Regularizer

Multilayer perceptrons (MLPs) are effective in learning
continuous functions compared with the localized receptive
fields of convolutional neural networks. Accordingly, con-
tinuous neural representations employ an MLP, denoted as
φθ (v) : Rd

7→ Ro, to approximate the explicit solution of
an implicit function F(v, φθ , ∇vφθ , ∇

2
vφθ , . . . , ) = 0. For

instance, a seismic dataset Z ∈ RV1×V2×V3×V4×V5 can be
represented with φθ (v) : R5

7→ R, which follows the
condition φθ ((v1/V1), (v2/V2), (v3/V3), (v4/V4), (v5/V5)) =

Zv1v2v3v4v5 , for vi ∈ {1, . . . , Vi }, i = 1, 2, . . . , 5. Here,
vi denotes the index in the i th dimension, which encom-
passes Vi discrete sampling points. Unlike traditional dis-
cretized representations, the detail captured by continuous
neural representations is not limited by the grid resolu-
tion v1, v2, v3, v4, and v5, as it can predict values at any
location v ∈ R5, not just at discrete intervals, such
as ((v1/V1), (v2/V2), (v3/V3), (v4/V4), (v5/V5)). In addition,
scaling to higher dimensions is straightforward by increasing

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on November 12,2024 at 00:03:52 UTC from IEEE Xplore.  Restrictions apply. 



5922211 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

the dimensionality of v. This property is particularly beneficial
to large-scale applications, freeing us from constructing high-
dimensional operators. The continuous neural representation
encodes data in the weights of a neural network rather than
storing it explicitly, leading to a dramatic reduction in memory
requirements. Therefore, it has gained widespread use in
machine learning for view synthesis [38], [39], [40], signal
compression [39], [41], and classification [42].

Continuous neural representations are increasingly recog-
nized as an effective implicit regularizer in image restora-
tion [43], [44]. This stems from an intriguing paradox that
modern deep neural networks, although highly overparam-
eterized compared with training data, often generalize well
beyond classical statistical expectations [45]. This ability
enables them to capture the essence of natural data. Initial
theoretical explanations began with simple linear neural net-
work models, analyzing them through the lens of gradient
dynamics. Continuous form (infinitesimally small) of gradient
dynamics made some theoretical progress, which indicates
that implicit regularization favors low-rank solutions [46],
[47], [48]. Razin et al. [49] stepped further toward practical
deep learning and provide theoretical analysis of this implicit
regularization in tensor form via certain type of nonlinear
neural networks, suggesting a bias toward lower complexity
in representations. The tendency toward low rank or simpler
representations is, thus, extended from matrices (2-D arrays)
to tensors (multidimensional arrays). However, the above
continuous form of gradient dynamics deviates from actual
applications, since the practical learning rate is usually nonin-
finitesimal. Further exploration has led to the development of
discrete gradient dynamics [50], [51], [52] to bridge the gap
between theoretical propositions and practical implementation
constraints. However, this theory imposes a computational tax
for trajectory analysis and has primarily been explored within
the confines of simpler, two-layer networks.

Alternatively, some researchers turn to Fourier spectrum
analysis and theoretically prove that coordinate-based MLPs
have the nature of “spectral bias” [53], [54], [55]. They
highlight that the networks exhibit an inherent preference
for lower frequency functions. This bias acts as a built-in
filter against high-frequency noise, prioritizing smoother func-
tions over more erratic ones. Valle-Pérez et al. [56] also
provided clear evidence that deep nonlinear networks have
a strong simplicity bias toward simple Boolean functions.
Despite the ongoing evolution of theoretical analysis, low-
rank, spectral, and simplicity biases have demonstrated their
utility in refining neural network models to more accurately
capture and represent continuous signals as an effective
regularizer.

C. 5-D Seismic Interpolation by ISR

Leveraging the regularization introduced by continuous
neural representations, we implement ISR to interpolate 5-D
seismic data by encapsulating the continuous nature of the
seismic 5-D wavefield. We adopt the square function as
our data fitting metric E for its simplicity, and the 5-D
ISR interpolation can be formulated as F(θ , v, Dobs) =

Fig. 2. Network architecture for the proposed ISR 5-D interpolation method.

(P(φθ (v))−Dobs(v))2
= 0, where φθ (v) : R5

→ R represents
the model output and Dobs(v) : R5

→ R is the observed
seismic dataset to be reconstructed. Note that our approach
can easily extend to a higher dimension, such as time-lapse
5-D reconstruction. The 5-D ISR interpolation is formulated
as follows:

θ∗
= arg min

θ

∑
(vi ,di )∈V×Dobs

(P(φθ (v)) − di )
2 (3)

where di = Dobs(vi ) is the ith observed sampling
point corresponding to the normalized coordinate vi =

(v1i , v2i , v3i , v4i , v5i ) and V × Dobs
= {(vi , di )}

N
i=1 is the

training set. The training set is sampled from the regular
grid of values from observed Dobs

∈ RV1×V2×V3×V4×V5 . After
training, d(v) is predicted by φθ∗(v) at any location v.

The network architecture, depicted in Fig. 2, comprises a
Fourier feature mapping (FFM) layer γ (v) and a subsequent
MLP Nθ : γ (v) 7→ di , requiring optimization of parameters θ

to conform with observed data. Alternatively, the network can
be formalized as φθ (v) = Nθ (γ (v)).

1) Fourier Feature Mapping: While standard MLPs are ver-
satile approximators, they often struggle with high-frequency
features. According to Tancik et al. [57], MLPs with the
rectified linear unit (ReLU) activation function cannot effec-
tively capture high-frequency components, and a Fourier
feature encoder can significantly improve the representa-
tion ability of implicit neural representations. Inspired by
this, ISR involves expanding input coordinates through a
high-dimensional Fourier mapping γ (v), significantly improv-
ing the model’s ability to discern high-frequency information.
This Fourier spectrum expansion is defined by

γK (v) = [cos(ω1v1), sin(ω1v1), cos(ω1v2)

sin(ω1v2), . . . , cos(ωK v5), sin(ωK v5)]T (4)

where K is the component count and ωi reflects linear
(ωi = iπ/2) or exponential (ωi = π2i ) frequency mappings,
aiding in accelerated model convergence for seismic signals.
We adopt an exponentially varying ω, because it proves more
effective for seismic signals in our tests. In addition, despite
seismic data having different coordinate lengths and units
along different dimensions, it is not necessary to incorporate
a composite encoding. While anisotropic encoding has proven
beneficial in various applications, our experimental findings
indicate that it does not provide added advantages for the
specific tasks addressed in our research.

2) MLP Architecture: The architecture of MLP part Nθ

consists of 17 fully connected (FC) layers. The first 16 layers
each feature 256 hidden neurons and employ the ReLU
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activation function, while the final layer comprises 128 hidden
neurons and forgoes an activation function. Skip connections
in MLPs can help with the vanishing gradient problem and
enhance model accuracy [58], [59]. To bolster network training
efficacy, we have integrated seven skip connections. These are
strategically introduced after every second FC layer, terminat-
ing after the 16th layer, and serve to merge the initial input
γ (v) with the intermediate representation of Nθ .

The mathematical representation of MLP φθ with L =

16 layers is defined by the final output from the last layer

φθ (v) = z(L+1) (5)

where each layer ℓ, ranging from 1 to L + 1, computes the
preactivation vector

z(ℓ)
= W(ℓ)v(ℓ−1)

+ b(ℓ) (6)

and, subsequently, the activation vector

v(ℓ)
= σ

(
concat

(
z(ℓ), s(ℓ)

))
. (7)

Here, σ(·) is an elementwise ReLU activation function, and
v(0)

= γK (v). The network parameters are denoted by θ =

{W(ℓ), b(ℓ)
| ℓ = 1, 2, . . . , L + 1}, where W(ℓ)

∈ Rnℓ×nℓ−1

and b(ℓ)
∈ Rnℓ define the weights and biases for each layer,

respectively. The notation nℓ indicates the number of neurons
in the ℓth layer with n0 = 5 and nL+1 = 1. The concate-
nation operation, denoted by concat(·,·), merges the layer’s
output with the skip connection before activation, enriching
the model’s feature space and enhancing its ability to learn
complex patterns. The skip connections are achieved by

s(ℓ)
=

{
v(0), if ℓ mod 2 = 0
0, otherwise.

(8)

The network’s lightweight design ensures manageable training
times per epoch, making it practical for seismic 5-D interpo-
lation.

III. EXPERIMENTS

A. Synthetic Data Example 1

To assess the effectiveness of our continuous neural implicit
representation for seismic data interpolation, we create a
synthetic 5-D seismic dataset G(t, mx , m y, hx , h y) with the
dimensions of 256 × 20 × 20 × 10 × 10. This dataset
features 20 samples per CMP dimension, ten traces per offset
dimension, and 256 time samples per trace. For quantitative
analysis, we introduce a reconstruction quality metric, Q,
defined in decibels (dB) as follows:

Q [dB] = 10 log10

(
∥Gtrue

∥
2
F

∥Gtrue − Grecon∥2
F

)
(9)

where Gtrue represents the original complete data and Grecon

denotes the reconstructed data.
To simulate real-world seismic data scenarios of incomplete

seismic data, we randomly omit seismic traces by a sam-
pling operator. In our experimental design, we remove 90.3%
of seismic traces, resulting in a sparsely populated dataset,
Gobs. Subsequently, we employ the proposed ISR interpolation

method illustrated in Fig. 2 to reconstruct the missing seismic
data.

In the FFM module, we set K = 10 for encoding each input
coordinate, and the frequency ω varies exponentially. Unlike
traditional methods that often use small sliding patches for
processing 5-D seismic data, our network’s ample capacity
allowed us to encode the entire dataset Gobs directly into the
MLP during the self-supervised training phase. After training,
we query the network for each coordinate point to determine
its corresponding value.

Fig. 3 illustrates our experiment results, and we fix the inline
and crossline offsets to hx = 2 and h y = 2, respectively.
We extract 3-D cubes for visual comparison from the complete
dataset Gtrue, the decimated observed dataset Gobs, and the
reconstructed dataset Grecon. As shown in Fig. 3(b) and (c), the
ISR interpolation method achieves impressive results, almost
perfectly recovering the missing traces. According to the Q
metric, the quality of the reconstructed data relative to the
original is as high as 39.83 dB, demonstrating the robustness
and effectiveness of our proposed model in dealing with
significant data sparsity.

B. Synthetic Data Example 2

To rigorously assess the reconstruction capabilities of
our method on more complex wavefields, we conduct
tests on an open-source 5-D seismic dataset available at
https://wiki.seg.org/wiki/SEG_C3_NA. This dataset is com-
posed of 51 sail lines, with each featuring 96 shots, eight
streamers per shot, and 68 receivers per streamer. This results
in a large total data volume of 625 × 51 × 96 × 8 × 68. Each
temporal sample is collected at an 8-ms interval, spanning
625 samples in the time dimension. Notably, the dataset is
presented without normal moveout (NMO) correction, thus
rendering a formidable challenge for any data reconstruction
technique due to the unadjusted travel times with high curva-
tures.

For our experimental analysis, we concentrate on sail lines
numbered 25–41, extracting a subset of data O(t, sx , sy, rx , ry)

with the dimensions of 384 × 16 × 32 × 8 × 32. We then
subject this subset to manual decimation to examine the
performance of the continuous neural implicit representation
technique in interpolating 5-D seismic data. To emulate the
common issue of missing traces in real-world seismic data,
we apply a masking process that randomly omits seismic
traces. In our experimental design, we intentionally removed
80% of the seismic traces, creating a highly sparse dataset
Oobs. This level of sparsity is representative of the challenges
frequently faced in seismic data acquisition and processing,
providing a stringent test bed for our interpolation methodolo-
gies.

Fig. 4 presents a comparative analysis of reconstruction
results across eight gathers. The original data, depicted in
Fig. 4(a), exhibit relatively horizontal events in shallow regions
and dipping events at greater depths, with the variety of
event features adding complexity to the interpolation task. The
decimated data, shown in Fig. 4(b), are so sparse that the
continuity of the original event structures is severely disrupted.
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Fig. 3. (a) Three-dimensional slice view of noise-free synthetic 5-D complete data. (b) Decimated data with a missing rate of 90.3%. (c) Reconstructed
results by the proposed ISR method.

As a benchmark, we selected an established damped rank-
reduction (DRR) method [60]. This conventional approach,
represented in Fig. 4(c), demonstrates proficiency in recon-
structing seismic data. Nonetheless, it struggles with the
reconstruction of deep-layer dipping events due to rapidly
changing dips, which is a common limitation of traditional
methods. Moreover, as DRR operates in the frequency domain,
it inevitably introduces artifacts, particularly above the first
arrivals. This issue is also evidenced in Fig. 4(d), where signal
leakage is apparent.

Conversely, the reconstructed results from our proposed ISR
method, displayed in Fig. 4(e), reveal a cleaner reconstruction
with fewer artifacts than the DRR output. The ISR method
also successfully recovers more intricate wavefield features
within the deeper layers, showcasing a robust capability for
complex feature extraction. The difference gathers, illustrated
in Fig. 4(f), indicate that our method introduces less leakage.

For a quantitative comparison, we computed the Q value
across the entire dataset O(t, sx , sy, rx , ry). Our ISR method
outperforms the DRR method with a Q value of 12.88 dB
compared with 11.34 dB. This substantial improvement under-
scores the superior learning and generalization ability of the
ISR method in reconstructing a continuous 5-D wavefield,
even in the presence of substantial data sparsity and complex
geological scenarios. All the experimental parameters of our
method are kept the same as in the previous example, demon-
strating a flexible parameter selection that is robust across
different datasets and interpolation challenges.

The DRR method is executed on an Intel1 Core2 i9-12900H
CPU at 2.50 GHz, completing the task in 1444 s. Conversely,
the ISR method uses an NVIDIA GPU 2080 Ti, which requires
890 min for training; however, its testing phase is significantly
faster, taking only 600 s. Despite the considerable initial
computational investment in training, the efficiency of the
testing phase renders it practical for real-world applications.
Our approach remains cost-effective in deep learning applica-
tions, as it utilizes simplified neural networks that are typically
less resource-intensive. We will further recognize opportunities
for reducing training costs by updating codes and GPUs,
enhancing the overall efficiency of our method.

C. Field Data Experiment

Field data contrasts with synthetic data due to its inherent
complexity and prevalent noise. These challenges pose sig-
nificant difficulties for neural network training. To evaluate
the robustness and efficacy of our proposed ISR methodology,
we juxtapose it with the established DRR technique, utilizing
a land dataset acquired in China for our comparative study.
This dataset has been transformed from its irregularly sampled
state into regular grids. It comprises 250 temporal samples at
a 4-ms sampling interval, with ten midpoint x samples, ten
midpoint y samples, 21 offset x samples, and ten offset y
samples. The dataset is characterized by a 82% of its traces

1Registered trademark.
2Trademarked.
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Fig. 4. Comparison of results obtained using different methods to reconstruct
synthetic data. (a) Eight complete common receiver gathers obtained by fixing
sx = 16 and ry = 32. (b) Decimated data with 80% traces irregularly missing.
(c) and (d) Recovered results and reconstruction errors using the DRR method,
respectively. (e) and (f) Recovered results and reconstruction errors using the
proposed ISR method, respectively.

missing, presenting a formidable challenge for reconstruction
algorithms.

Within Fig. 5(a), we illustrate a subset of original CMP
gathers at CMP x = 5 and CMP y = 5. The data section
is contaminated with substantial gaps, indicative of the chal-
lenges inherent in field data reconstruction. These data serve
as the training target for our ISR method, as delineated in (3).
For this dataset, our method still employs an exponential
variation of the frequency ω and maintains the parameter
K = 10 within the FFM module. This parameter choice aligns
with the configurations used in our preceding experiments,
ensuring consistency in our methodological approach across
different datasets. Due to the prevalent noise, we apply a
denoising step to the results obtained from both DRR and
ISR by executing the DRR process once more, enhancing the
outcome quality. The CMP section results obtained by DRR
are displayed in Fig. 5(b), demonstrating effective recovery of
the missing traces from Fig. 5(a). Despite this, some artifacts
linger at the boundaries, partially obscuring valuable events
as indicated by the yellow arrows. In Fig. 5(c), we present

the ISR results, which exhibit remarkable recovery of all
missing traces, even in regions with significant data gaps.
When compared with the DRR approach, our method yields
better reconstruction quality, delineating clear and continuous
events, particularly with enhanced clarity in the boundary
regions. These findings underscore the proficiency of neural
networks in modeling complex, high-dimensional data fields
in a continuous manner.

To further substantiate the effectiveness of our ISR method,
we maintain a fixed CMP y at 5 and an offset y at 5 for
examining reconstruction quality across various dimensions.
The original seismic data sections, shown in Fig. 6(a), are
severely affected by numerous missing traces and noise.
Fig. 6(b) and (c) delineates the outcomes of the DRR and ISR
methods, respectively. It is apparent that the ISR method excels
at recovering the missing traces, indicating that the network
has effectively captured the essence of the intrinsic 5-D
seismic wavefield. While both methods achieve commendable
results in Fig. 6, the ISR method exhibits superior lateral
consistency in the reconstructed reflections, as black arrows
indicate, suggesting that the employed MLP model naturally
favors smooth interpolations among data points. Moreover,
the yellow arrows highlight the previous observation that ISR
enhances signal energy at boundaries. Consistent with the
regularizer analysis in Section II-B, ISR not only enhances
horizontal continuity in the reconstructed data but also demon-
strates greater resilience to noise during the interpolation
process.

Although we are constrained to present only a fraction of
the field data and our discussion is limited to the observed
performance, the stacking results offer a comprehensive com-
parative analysis. Fig. 7(a) showcases the stacked data prior
to interpolation, where a noisy time slice is evident in the
shallow-layer regions. The stacked cubes reconstructed using
the DRR and ISR methods, as depicted in Fig. 7(b) and (c),
respectively, markedly mitigate prestack noise and amplify
the signal energy relative to the original stack in Fig. 7(a).
Nonetheless, the profiles in Fig. 7(b) still reveal minor residual
noise in the shallow layers. In contrast, the profiles in Fig. 7(c)
exhibit a minimal level of random noise, attesting to the
superior noise resistance capabilities of the ISR method. This
stacking comparison effectively demonstrates the enhanced
performance of our ISR method over traditional rank-reduction
techniques in 5-D field data reconstruction.

IV. DISCUSSION

In investigating 5-D seismic data interpolation using implicit
neural networks, our studies have yielded preliminary results
that underscore the potential of this approach. The intrinsic
self-regularizing feature of ISR is a promising constraint for
inverse problems. By constructing a continuous representation
of the data, these networks inherently provide smoothness to
the interpolation, thus effectively avoiding overfitting the noise
present in the training data. This characteristic is particularly
beneficial to seismic data interpolation, where the trade-off
between accuracy and generalizability is paramount.

Nevertheless, we must confront the limitations evident
in our examples. A primary concern is the insufficient
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Fig. 5. Slice view of CMP gather results by assigning offset CMP x = 5 and CMP y number = 5. (a) Raw data. (b) Reconstructed by DRR. (c) Reconstructed
by the proposed ISR method.

Fig. 6. Slice view of CMP y gather results by assigning CMP y number = 5 and offset y number = 5. (a) Raw data. (b) Reconstructed by DRR.
(c) Reconstructed by the proposed ISR method.

denoising capability of the existing ISR framework. Although
the network excels at interpolating missing traces, its noise

suppression performance falls short of real-world application
requirements. Addressing this deficiency, future enhancements
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Fig. 7. Stacked results. (a) Before reconstruction. (b) After reconstruction
using the DRR method. (c) After reconstruction using the ISR method.

could include integrating established regularization techniques
from seismic processing, such as nuclear-norm regulariza-
tion [61] or total variation regularization [62]. In addition,
incorporating a Huber loss function offers a viable pathway

to counteract erratic noise [63]. These strategies are known
to effectively reduce noise by inducing sparsity constraints
or imposing penalties on solution variability. By embedding
these methods into the network’s loss function, we expect
to significantly bolster its ability to combat intricate noise
features typical of field data. Another limitation in our current
examples is the focus on regularly sampled data, a constraint
dictated by data availability. It is evident, however, that
ISR should be equipped to process irregularly sampled data
directly by ingesting the original trace coordinates. In addition,
the datasets utilized in our experiments are relatively small.
They are employed, because they are open-source and widely
used for benchmark tests within our academic community.
While useful for preliminary assessments, these datasets do
not fully demonstrate the superior capability of our method
in characterizing global features compared with traditional
methods. Since our ISR method uses coordinates as input,
the increased dataset size does not constrain network training,
because we employ stochastic gradient descent. In forthcoming
studies [64], we will test larger datasets, which we believe
hold considerable potential for more thoroughly exploring and
validating the distinct advantages of our approach.

Despite these limitations, the proposed reconstruction
network marginally outperforms conventional methods unsu-
pervised without significantly increasing computation costs.
This accomplishment is noteworthy, given the complexity
of the task. Moreover, the network architecture provides a
versatile backbone for future irregular and complicated recon-
structions. The network’s inherent flexibility allows for adding
task-specific modules, catering to particular reconstruction
needs. For instance, one could integrate modules that target
specific noise types or enforce geological constraints.

V. CONCLUSION

We have explored the frontier of 5-D seismic data interpo-
lation through implicit neural networks. The implicit neural
networks possess self-regularizing characteristics to mitigate
the risk of overfitting noisy data. Leveraging this, the proposed
ISR interpolation method efficiently fits observed 5-D seismic
data points and encodes a continuous 5-D wavefield into
an MLP network, offering a novel and computationally effi-
cient representation of seismic data. As a result, the network
adeptly interpolates missing data by querying their coordi-
nates. While our implicit neural network approach to 5-D
seismic interpolation shows promise over conventional rank-
reduction methods, it is still in its nascent stage. Its challenges,
particularly in noise suppression, signal fertile ground for fur-
ther research. Integrating established regularization techniques
into the network’s architecture could significantly enhance its
performance in real-world seismic data processing, paving the
way for a more robust and sophisticated tool in the field.
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