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ABSTRACT

Seismic data processing, specifically tasks like denoising
and interpolation, often hinges on sparse solutions of linear
systems. Group sparsity plays an essential role in this context
by enhancing sparse inversion. It introduces more refined
constraints, which preserve the inherent relationships within
seismic data. To this end, we propose a robust orthogonal
matching pursuit algorithm, combined with Radon operators
in the frequency-slowness ðf-pÞ domain, to tackle the strong
group sparsity problem. This approach is vital for interpolat-
ing seismic data and attenuating erratic noise simultaneously.
Our algorithm takes advantage of group sparsity by selecting
the dominant slowness group in each iteration and fitting Ra-
don coefficients with a robust l1-l1 norm using the alternat-
ing direction method of multipliers (ADMM) solver. Its
ability to resist erratic noise, along with its superior perfor-
mance in applications such as simultaneous source deblend-
ing and reconstruction of noisy onshore data sets, underscores
the importance of group sparsity. Synthetic and real compar-
ative analyses further demonstrate that strong group sparsity
inversion consistently outperforms corresponding traditional
methods without the group sparsity constraint. These compar-
isons emphasize the necessity of integrating group sparsity in
these applications, thereby indicating its indispensable role in
optimizing seismic data processing.

INTRODUCTION

Sparse representation has become a vital theoretical construct
with crucial practical applications in seismic signal processing.
The significance is underscored by its role in primaries estimation
(Van Groenestijn and Verschuur, 2009; Lin and Herrmann, 2013),

multiple attenuation (Sacchi and Ulrych, 1995; Herrmann et al.,
2000), and data reconstruction (Sacchi et al., 1998; Trad, 2009;
Herrmann, 2010), among others. Sparse representation asserts that
the seismic signal is sparse in specific transform domains, such as
Radon (Durrani and Bisset, 1984), Fourier (Gülünay, 2003; Xu
et al., 2005), Wavelet (Jian et al., 2006), and Curvelet (Candès
et al., 2006) transforms. Specifically, the number of nonzero coef-
ficients is substantially fewer than the total number of coefficients.
In contrast to direct applications of these mathematical transforms,
the integration of sparsity constraints provides a more robust frame-
work and enables a heightened ability to explore the inherent com-
plexities of seismic data. Typically, the capability to get sparser
solutions results in better outcomes when dealing with noisy, in-
complete, or complex data. Therefore, researchers mainly work
on developing more advanced sparse constraints and sparse solvers
to enhance the sparse representation ability.
The implementation of an additional group structure — often

referred to as group sparsity or group Lasso (Yuan and Lin, 2006;
Bach, 2008; Nardi and Rinaldo, 2008) — has yielded promising
results in improving the accuracy of sparse estimation in seismic
data processing. Methods leveraging group sparsity have been in-
novatively applied in various contexts. For instance, Trad et al.
(2002) use this concept to calculate the hyperbolic Radon transform
efficiently. Naghizadeh (2012) and Li and Sacchi (2022) use group
sparsity to classify coefficients in the frequency-wavenumber (f-k)
domain, enhancing seismic data denoising and interpolation. Sim-
ilarly, Vera Rodriguez et al. (2012) apply group sparsity for micro-
seismic data denoising, whereas Chen et al. (2019) fuse group
sparsity with total variation for seismic signal denoising.
Rodriguez et al. (2012) also use the idea of group sparsity for micro-
seismic seismic moment tensor inversion, for which the six ele-
ments of the seismic moment tensor are treated as a group for
sparse inversion. These methods demonstrate the ongoing evolution
and potential of group sparsity, offering promising solutions for
denoising and interpolation in seismic data processing. However,
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their applications to prestack data, which are contaminated by
high-amplitude erratic noise (statistical outliers) and missing traces,
are less understood. The performance of these methods in simulta-
neously removing erratic noise and performing interpolation
remains an area for further exploration.
The development of a robust sparse solver capable of addressing

inversion problems in data contaminated by erratic noise has been a
focal point of research for many scholars. Guitton and Symes
(2003), for example, replace the conventional l2-norm with the
Huber norm for the residual term, enhancing the handling of seismic
data with outliers. Similarly, Trickett et al. (2012) deploy a rank
reduction filter to mitigate erratic noise. A more recent effort by
Li and Sacchi (2021) has resulted in a sparse and robust Radon
transform, estimated via matching pursuit (MP), for solving simul-
taneous source separation problems. A common thread in most of
these methods is the utilization of robust M-estimators to replace the
l2-norm of the residual term, thereby increasing the robustness of
the cost function to erratic noise (Maronna, 1976). This paper fur-
ther explores this by integrating robust inversion with group spar-
sity, aiming to enhance the effectiveness of sparse estimation.
We propose a novel sparse inversion method with group sparsity

for interpolating seismic data and attenuating erratic noise simulta-
neously. Our contributions to this study can be delineated as fol-
lows: initially, we create a robust algorithm that merges robust
inversion with group sparsity, focusing on the linear Radon trans-
form in the frequency-slowness (f-p) domain. Using the orthogonal
matching pursuit (OMP) (Tropp and Gilbert, 2007), we iteratively
build estimated results. This process involves dividing the Radon
coefficients m into distinct groups fmp1

;mp2
; : : : ;mpn

g, catego-
rized by different slowness p in the f-p domain. In each iteration,
the algorithm selects the group pi that maximizes kmpi

k22. Sub-
sequently, we deploy an l1-l1 alternating direction method of mul-
tipliers (ADMM) solver (Wen et al., 2016) to fit the Radon
coefficients within all currently selected groups. By limiting the
number of best-correlated groups, the OMP enhances the sparsity
of the groups, whereas the ADMM solver explores the sparsity
within those selected groups. As a result, the proposed method ac-
tively encourages sparsity at group and individual coefficient levels,
effectively resolving the inversion problem with a robust sparse
constraint. To evaluate the resilience and efficacy of this novel
reconstruction method, we present 2D and 3D synthetic examples
and apply the technique to real-data scenarios. Synthetic and real-
data applications reinforce the effectiveness of the proposed robust
reconstruction method.

THEORY

A seismic signal can be represented as follows:

y ¼ Axþ e; (1)

where y denotes the signal, x is the coefficients, andA is a synthesis
operator or matrix that maps the coefficients into the seismic signal.
Similarly, e represents additive noise to the signal. In this situation,
the sparse approximation problem can be expressed as

min
x
kxk0 subject to kAx − yk22 ≤ δ; (2)

where k:k0 is the l0-norm, which measures the number of nonzero
coefficients, and k:k2 symbolizes the l2-norm (equal to the square

root of the inner product of a vector with itself) used to fit the
residuals. This problem is a combinatorial, nondeterministic poly-
nomial time (NP)-hard problem for which finding an exact solution
is prohibitively expensive. In general, two groups of methods can be
used to solve the problem 2. One is the convex relaxation, replacing
the l0-norm with the l1-norm (Chen et al., 2001), which transfers
the problem into a convex optimization problem

x̂ ¼ argmin
x

kAx − yk22 þ λkxk1; (3)

where λ is a trade-off parameter. This problem also is known as the
lasso problem (Tibshirani, 1996) and can be solved by many meth-
ods like Fast Iterative Shrinkage-Thresholding Algorithm (Beck
and Teboulle, 2009), Iterative Reweighted Least Squares (Scales
and Gersztenkorn, 1988), and ADMM (Boyd et al., 2011). The
other group of approaches is the greedy method, like MP
(Mallat and Zhang, 1993) and OMP (Pati et al., 1993; Tropp
and Gilbert, 2007).
In many scenarios, incorporating a group structure constraint can

yield a better sparsity estimation (Majumdar and Ward, 2009;
Elhamifar and Vidal, 2011). This differs from the conventional
sparsity assumption, for which sparsity is assessed by counting
the number of nonzero coefficients. Assume the coefficients in x
are partitioned into N nonoverlapped groups x1; x2; x3; : : : xN .
Within the framework of a general group sparsity constraint,
elements are organized into these distinct groups, with either all
or none of the elements in a group being zero, as follows:

x̂ ¼ argmin
x

kAx − yk22 þ β
XN
i¼1

kxik2; (4)

where β is a trade-off parameter and xi is the ith group of x.
A further refinement, called strong group sparsity, can provide

enhanced performance (Simon et al., 2013; Vincent and Hansen,
2014). This advanced form does not merely constrain sparsity at
a group level but also imposes sparsity within the individual coef-
ficients of the groups. In a strong group sparsity problem, not only
must a few of the groups contain nonzero coefficients but the co-
efficients within those selected groups must themselves be sparse.
This represents a more nuanced and adaptable method for evaluat-
ing sparsity:

x̂ ¼ argmin
x

kAx − yk22 þ λkxk1 þ β
XN
i¼1

kxik2: (5)

When seismic data are marred by erratic noise, which can be
treated as statistical outliers, the use of an M-estimator becomes
invaluable. An M-estimator is a statistical technique used for esti-
mating the parameters of a statistical model, particularly in the
realm of regression analysis and robust statistics. These estimators
are intentionally crafted to exhibit resilience against outliers and
departures from the assumption of normality in the data. Among
the M-estimators commonly applied in robust denoising methods,
the Huber norm, the l1-norm, and the Tukey norm stand out as the
most frequently used choices. In the proposed method, we use
the l1-norm to replace the l2-norm. This substitution leads to a
modification in equation 5 as follows:
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x̂ ¼ argmin
x

kAx − yk1 þ λkxk1 þ β
XN
i¼1

kxik2: (6)

To solve this equation, we use the OMP with the l1-l1 ADMM.
To adapt this method to the complex task of processing seismic
data, we harness the power of the linear Radon transform, enabling
us to synthesize the seismic signal in a more precise and controlled
manner.

Linear Radon transform

The linear Radon transform is time-invariant, which means it can
be calculated either in the time or frequency domain. The Radon
transform in the frequency domain can be represented as the follow-
ing equation:

M̂ðp; fÞ ¼
X
x

Dðx; fÞeiωxp; (7)

Dðx; fÞ ¼
X
p

Mðp; fÞe−iωxp; (8)

where ω ¼ 2πf. These equations also can be written in the matrix
form

M̂ ¼ LD; (9)

D ¼ L�M; (10)

where L is the adjoint Radon operator. Correspondingly, L� is the
forward Radon operator, which transfers the Radon coefficients in
the f-p domain to the f-x domain. It also can be extended to a 3D
form

M̂ðpx; py; fÞ ¼
X
x

X
y

Dðx; y; fÞeiωðpxxþpyyÞ; (11)

Dðx; y; fÞ ¼
X
px

X
px

Mðpx; py; fÞe−iωðpxxþpyyÞ; (12)

which, in matrix form, can be written as

M̂ ¼ Lpx
DLpy

; (13)

D ¼ L�
px
ML�

py
: (14)

In this section, we will demonstrate the application of group
theory to the Radon transform. Figure 1 showcases a Radon panel
in the f-p domain. We have partitioned the Radon coefficient panel

into N equally sized groups, spanning from pmin to pmax. Each
group encompasses coefficients across all frequencies. The l2-norm
of each group is computed as follows:

EðpiÞ ¼
Xfmax

fmin

kM̂ðpi; fÞk22: (15)

Consequently, the groups exhibiting the highest summation of
l2-norm in equation 15 will be considered the most correlated
groups.
This method shares similarities with the approach proposed by

Naghizadeh (2012), in which a similar technique is used to identify
dominant dips in the f-k domain. However, we find that working
within the f-p domain is more intuitive and convenient. This is be-
cause the groups in the f-p domain manifest as vertical lines, elimi-
nating the need for path calculations. Furthermore, it eliminates the
aliasing issue present in the f-k domain due to the Fourier trans-
form. Because a sparse solver accommodates the chosen coeffi-
cients, the nonorthogonality of the Radon transform, in contrast
to the Fourier transform, becomes inconsequential.
To demonstrate the efficacy of the group sparse method with the

linear Radon transform, we analyze a synthetic 2D example featur-
ing three linear events. Figure 2a shows the fully sampled clean
data, and Figure 2b illustrates clean data with 75% of the traces
missing. To emulate a more realistic scenario and increase the com-
plexity, Figure 2c portrays fully sampled data contaminated with
strong erratic noise, including sparse noise and three bad traces,
whereas Figure 2d represents data affected by erratic noise and
missing traces. Then, we perform the linear Radon transform to
these data, respectively. Figure 2e–2h reveal the corresponding Ra-
don coefficients in the f-p domain. Because the synthetic linear
events have varying velocities, the Radon coefficients are situated
around three specific p values in the f-p domain. In addition, it is

Figure 1. A cartoon shows how to find the best-correlated groups.
The dashed line indicates the location of the coefficients for each
group.
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clear that the missing traces and erratic noise generated the random
noise in the f-p domain. Consequently, the dominant slowness in
the f-p domain is obscured when faced with strong erratic noise
and many missing traces. However, Figure 2i–2l provides a clear
visualization of the l2-norm for each slowness p across all frequen-
cies. Even with the substantial erratic noise and many missing
traces, we can still discern the three dominant slowness values
effortlessly, as shown in Figure 2i–2l. These findings underscore
the potential of the linear Radon transform in identifying key char-
acteristics despite significant data disturbances.
Traditionally, the Radon transform is predominantly applied in

the temporal domain (τ-p), as opposed to the frequency-slowness
(f-p) domain. In Figure 3, we compare Radon panels for a seismic
gather similar to the one depicted in Figure 2d in τ-p and f-p
domains. In addition, we present corresponding l2-norm maps
in Figure 3c and 3d.
In the τ-p domain, the energy of the adjoint Radon transform is

dispersed due to a smearing effect, resulting in less pronounced fo-
cus when compared to the f-p domain. This reduced amplitude

contrast between the dominant p values and the noise complicates
group selection. Consequently, our method benefits from the
robustness of the f-p domain in the group selection step, where
the l2-norm map is more informative and reliable.
By using the linear Radon operators in the f-p domain, the

problem for simultaneous interpolation and erratic noise removal
becomes to minimize the following cost function:

argminkL�m − dk1 þ λkmk1 þ β
XN
i¼1

kmik2; (16)

wherem is the Radon coefficient in the f-p domain. The data fitting
term kL�m − dk1 enhances the robustness of the cost function to
erratic noise. Meanwhile, β

P
N
i¼1 kmik2 is used to promote group

sparsity, where N designates the constraint number on group spar-
sity. The addition of λkmk1 serves to augment the sparsity within
these groups. To solve this problem, we use one commonly used
greedy method, known as the OMP (Pati et al., 1993; Tropp and
Gilbert, 2007).

Figure 2. (a) Two-dimensional synthetic data. (b) Two-dimensional synthetic data with 75% of traces removed randomly. (c) Two-dimensional
synthetic data with erratic noise. (d) Two-dimensional synthetic with erratic noise and missed traces. (e–h) The corresponding Radon
coefficients of (a–d) in the f-p domain. (i–l) The corresponding norm map of slowness p.
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Orthogonal matching pursuit

The MP (Mallat and Zhang, 1993) and OMP (Pati et al., 1993;
Tropp and Gilbert, 2007) stand out as the two most frequently used
greedy pursuit algorithms. Unlike MP, which updates one coeffi-
cient in each iteration, OMP is more intricate, considering all of
the currently selected coefficients at each step. Therefore, to solve
a general sparse linear problem like that in equation 2, OMP min-
imizes the following cost function in each iteration:

x̂½k�
T ½k� ¼ argmin

~x
T½k�

ky − AT ½k� ~xT ½k� k22; (17)

where T ½k� refers to the set of indices of all coefficients selected up to
iteration k. Consequently, the computational demands of OMP are
greater than those of MP. Nevertheless, OMP often yields more re-
fined results. A comprehensive outline of this process for a general
sparse linear problem is provided in Algorithm 1. In this algorithm,
OMP helps us select the best-correlated coefficient, and the minimi-
zation function equation 17 is used to fit these coefficients with data.
Therefore, by combining the OMP with the minimization function of
equation 17, we can find the minimum number of coefficients to fit
the data and achieve a similar result as solving equation 3.

Computing the group sparsity solution with OMP and
Radon operators

Modifications to the OMP algorithm are required to address the
minimization problem described in equation 16. Instead of select-
ing a single coefficient at each step, the approach used involves

choosing an entire group of coefficients during the basis function
selection phase. Specifically, coefficients are divided into various
groups based on their slowness p. In our case, we evenly divide
p from pmin to pmax into N groups. Then, the group with the maxi-
mum l2-norm in the frequency domain is selected. As illustrated
in Figure 2, this selection method, which relies on the energy sum-
mation with l2-norm, helps mitigate many effects from random
noise in the f-p domain, enhancing the robustness of the coeffi-
cient selection process. Subsequently, all coefficients within the
currently chosen groups Tk are used by minimizing the following
cost function:

m̂k
Tk ¼ argmin

~mTk

kd − L�
nð ~mTkÞk1 þ λk ~mTkk1: (18)

This l1-l1 minimization problem can be effectively solved by
the l1-l1 ADMM solver (Yang and Zhang, 2011; Wen et al.,
2016). For complete details of this method, the robust group spar-
sity OMP is fully outlined in Algorithm 2. To interpolate the miss-
ing traces simultaneously, we add a sampling operator S to the cost
function

m̂k
Tk ¼ argmin

~mTk

kd − SL�
nð ~mTkÞk1 þ λk ~mTkk1: (19)

We use a meticulous selection process during each iteration to
identify the most highly correlated group by using the l2-norm
map. Subsequently, we construct a model subspace denoted as

Figure 3. Comparing the l2-norm maps for Radon coefficients in the τ-p and f-p domain.

Algorithm 1. OMP.

Input: y, A, and k

Output: r½k�, x̂½k�

Initialization: r½0� ¼ y, x̂½k� ¼ 0, and T ½0� ¼ ∅
for k ¼ 1; 2; : : : :; K do

l ¼ argmax
j¼1;2; : : : :M

jhA; r½k−1�ij

T ½k� ¼ T ½k−1� ∪ flg
x̂½i�
T ½i� ¼ argmin

~x
T½i�

ky − AT ½i� ~xT ½i� k22

r½k� ¼ y − Ax̂½k�
T ½k�

end for

Algorithm 2. SG-OMP.

Input: d, L, and k

Output: m̂½k�

Initialization: r½0� ¼ d, m̂½k� ¼ 0, and T ½0� ¼ ∅
for k ¼ 1; 2; : : : :; K do

M ¼ Lr
Pick dominant slowness pk

Tk ¼ Tk−1 þ pk

m̂k
Tk ¼ argmin

~mTk

kd − SL�
nð ~mTkÞk1 þ λk ~mTkk1

rk ¼ d − SL�m̂k
Tk

end for
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~mTk , encompassing coefficients from all presently selected groups
up to the kth iteration. We then use an ADMM solver to minimize
the cost function defined in equation 19, resulting in the solution
m̂k

Tk at the kth iteration. Importantly, the Radon operator is exclu-
sively applied within this selected subspace, ~mTk , as opposed to
the entire Radon space. This optimization strategy significantly
reduces the computational burden, enhancing efficiency.
Using the OMP, we can fit the data with the minimum groups

selected. The l1-norm-regularized minimization problem inside
the OMP helps us achieve sparsity inside the selected groups.
Therefore, it produces the final result, not only with the minimum
number of groups but also with sparsity inside the groups. If we use
a minimization function without the l1 regularized term, then this
algorithm can be used to solve a general group sparse problem in-
stead of strong sparse problems.

EXAMPLES

In this section, we will assess the proposed algorithm’s perfor-
mance using a combination of synthetic and real-data examples.
To gauge the quality of the denoised results, we will use the sig-
nal-to-noise ratio (S/N) calculation, which is defined as:

S=Nout ¼ 10 log
kdck22

kdc − drk22
: (20)

In this equation, dc represents the original clean data, whereas dr
signifies the denoised output.

2D synthetic examples

We begin by assessing the robust interpolation performance of the
proposed algorithm, using the same synthetic data shown in Figure 2.
This test involves a comparison between the new method and three
other cases: a traditional l2-l1 sparse inversion; an l2-l1 sparse in-
version with a sparse group constraint; and an l1-l1 sparse inversion
without a sparse group constraint. Figure 4 illustrates the recon-
structed results using these different methods. As anticipated, the
l2-l1 inversion in Figure 4a yields the worst outcome because it
lacks robustness against erratic noise. Figure 4c demonstrates the
benefits of the l2-l1 method with group sparsity, which significantly
enhances the nonrobust l2-l1 inversion results. Meanwhile, the
l1-l1 inversion results in Figure 4e offer an improvement compared
with Figure 4a, though still inadequate in the reduction of strong
erratic noise. Ultimately, Figure 4g presents the denoised result
achieved through l1-l1 inversion coupled with group sparsity, stand-
ing out as the best among all tested methods.
Figure 5 shows the estimated Radon coefficients in the f-p do-

main, whereas Figure 6 depicts the corresponding Radon coefficients
in the τ-p domain. Through the application of the proposed algo-
rithm, noise and smear effects within the Radon transform in the
τ-p domain are successfully removed. This outcome highlights
the superior robust interpolation results of the proposed robust group
sparsity algorithm, particularly in managing erratic noise.

3D synthetic examples

Our algorithm is adaptable to 3D scenarios using the 3D Radon
transform. Figure 7a illustrates a basic 3D cube featuring three lin-
ear events. Figure 7b presents the synthetic data contaminated with

Figure 4. (a) Interpolated result of l2-l1 sparse inversion (S/N = 2.7 dB), (c) interpolated result of l2-l1 sparse inversion with group sparsity
(S/N = 9.8 dB), (e) interpolated result of l1-l1 sparse inversion (S/N = 5.5 dB), and (g) interpolated result of l1-l1 sparse inversion with group
sparsity (S/N = 26.4 dB). (b, d, f, and h) errors between corresponding interpolated result and Figure 2d.
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erratic noise, with 90% of the traces missing. For a better compari-
son, Figure 7c shows a frequency slice of 3D Radon coefficients
from the clean data, and Figure 7d reveals a corresponding slice
from the noise-contaminated data. Whereas the peaks correspond-
ing to the three original events can be identified in the clean data,
discerning them in Figure 7d is challenging due to the missing
traces and erratic noise. Figure 7e and 7f demonstrate the l2-norm
of each slowness group, enabling the correct peaks to be identified
once more. Finally, the proposed robust reconstruction method, ap-
plied to Figure 7b in conjunction with the 3D Radon transform, is
depicted in Figure 8. From it, it is clear that our algorithm effec-
tively recovers the desired three linear events, demonstrating the
effectiveness.

Real-data example 1: Marine data with swell noise

We first apply the proposed method to eliminate a specific type of
erratic noise in marine data. Figure 9 shows a shot gathered from a
marine data set, consisting of 310 traces with a total sample time of
6.142 s and a sample interval of 0.002 s. This shot gather is notable
for the presence of high-amplitude swell noise, considered a typical

form of erratic noise (Bekara and van der Baan, 2010). When work-
ing with shot gathers containing curved events, our method can be
applied to small windows, treating the events as linear within those
confines. In this example, we partition the shot gather into small
windows of every 40 traces, allowing for a 10-trace overlap between
each window. We also use the stagewise weak OMP (SWOMP)
(Blumensath and Davies, 2009) to accelerate the reconstruction
process because this real-data example contains more dips than
the previous synthetic counterpart. Unlike OMP, which selects only
one group in each iteration, SWOMP identifies all groups within a
factor of α of the largest group mj as follows:

Tk ¼ Tk−1 ∪
�
i∶

XN
i¼1

kmik2 ≥ α �max
XN
i¼1

kmjk2
�
: (21)

Figure 10 showcases the denoised shot gathered using different
methods. It is clear that our approach excels in noise elimination and
maintaining the continuity of the useful data.

Figure 5. (a) Estimated f-p panel by l2-l1 sparse inversion, (b) estimated f-p panel by l2-l1 sparse inversion with group sparsity, (c) esti-
mated f-p panel by l1-l1 sparse inversion, and (d) estimated f-p panel by l1-l1 sparse inversion with group sparsity.

Figure 6. Corresponding τ-p panels. (a) l2-l1 sparse inversion, (b) l2-l1 sparse inversion with group sparsity, (c) l1-l1 sparse inversion, and
(d) l1-l1 sparse inversion with group sparsity.
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Real-data example 2: Marine data deblending

In our final experiment, we test the proposed algorithm against a
distinct noise type: the blending noise that arises during simultane-
ous source seismic data collection. This acquisition method,
wherein seismic sources are fired at random with overlap, is used
to conserve time and amplify source density (Beasley, 2008;

Berkhout et al., 2008). Such random firing leads to what is known
as blending noise.
Although blending noise appears coherent in the common-shot

gather, its interferences manifest randomly in the common-receiver,
offset, and midpoint gathers. This means that deblending can essen-
tially be framed as a robust denoising challenge within these gath-
ers. Our test uses 2D prestack marine shot records from an SEG

Figure 7. (a) Three-dimensional synthetic data,
(b) 2D synthetic data with erratic noise and
90% of traces missed, (c) 3D Radon coefficients
of (a) at one frequency slice, (d) 3D Radon coef-
ficients of (b) at one frequency slice, (e) 2D norm
map of slowness p for clean data, and (f) 2D norm
map of slowness p for decimated noise data.

Figure 8. (a) Interpolated result (S/N = 27.3 dB)
and (b) errors between (a) and Figure 7a.
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open-source data set, comprising 1001 shot gathers and 120 traces
each. By numerically blending three neighboring shots into one
gather and arbitrarily eliminating half of the traces, we are able
to simulate the deblending challenge. For this example, we apply
the robust method with and without groups. Figure 11 shows the
data in one of the common-offset gathers. To handle this blending

noise and reconstruct the missing traces, we apply our method to 100
trace windows with 40 overlaps at the edges. This process is repeated
across all common-offset gathers, leading to the final deblending re-
sult on the common-shot gathers. Figure 12 exhibits the final de-
blending and reconstruction result on one such common-shot
gather. A close examination of Figure 12e reveals that our algorithm
effectively eliminates the deblending noise and recovers useful sig-
nals. Comparing the results in Figure 12c and 12e, the result of the
method with groups is better than the result without groups. The min-
imal differences (Figure 12f) between our results and the original data
affirm a satisfactory removal of deblending noise.

DISCUSSION

The paper introduces an innovative approach for implementing
the robust Radon transform, focusing exclusively on the linear Ra-
don transform. Given that the method operates within the frequency
domain, it is not suitable for the hyperbolic Radon transform. When
dealing with substantial real-data examples, it is advantageous to
work with smaller windows to optimize computational efficiency.
The choice of window size depends on the nature of the data; it
should be such that the real data appear linear within these windows.
However, excessively small window sizes are to be avoided because
they can result in an imbalance between the energy of erratic noise
and coherent signals, leading to increased computational costs.
Our proposed method is applied to address the simultaneous

source separation problem. We acknowledge that various other
methods exist for tackling this issue, such as those based on the
robust Radon transform (Ibrahim and Sacchi, 2014, 2015) or those
operating in different transform domains like the Fourier domain
(Abma et al., 2010), the Seislet domain (Chen et al., 2014), and
the Curvelet domain (Kontakis and Verschuur, 2017). Our method
generated comparable results to other deblending methods. How-
ever, it is important to note that the primary objective of our paper
is not to compare the deblending performance of our algorithm
against other methods. Instead, our primary goal is to present aFigure 9. A 2D real data shot gather with strong swell noise.

Figure 10. (a) Denoised result by l2-l1 sparse inversion, (b) denoised result by l2-l1 sparse inversion with group sparsity, (c) denoised result
by l1-l1 robust sparse inversion, and (d) denoised result by l1-l1 sparse inversion with group sparsity.
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Figure 11. One common-offset gather. (a) Original data, (b) data with blended noise and 50% of random missed traces, (c) reconstructed result
by l1-l1 method without using groups (S/N = 9.9 dB), (d) errors between the reconstructed result (c) and the original data, (e) reconstructed
result by the proposed method (S/N = 12.2 dB), and (f) errors between the reconstructed result (e) and the original data.

Figure 12. One common-shot gather. (a) Original data, (b) blended shot gather with three shots in one shot gather and 50% of randommissed traces,
(c) reconstructed result by l1-l1 method without using groups (S/N = 9.2 dB), (d) errors between the reconstructed result (c) and the original data,
(e) reconstructed result by the proposed method (S/N = 11.3 dB), and (f) errors between the reconstructed result (e) and the original data.
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robust OMP algorithm for solving the strong group sparsity prob-
lem, which can be used to compute a robust Radon denoiser for
mitigating erratic seismic noise. Unlike most robust inversion meth-
ods that attempt to optimize all coefficients in the transform
domains to best match the data, our approach focuses on optimizing
coefficients within selected groups, with the Radon operator exclu-
sively operating within the chosen subspace. Furthermore, when
combined with the SWOMP, which selects multiple groups in each
iteration, our method offers significant cost savings. In our case, for
real-data examples, we use only a total of five iterations inside the
OMP to process each window.
In general, solving the strong group sparsity problem entails min-

imizing the two regularized terms as outlined in equation 5, making
it more complex than dealing with a cost function containing just
one regularized term. The complexity increases further when the l2

term is replaced with a robust M-estimator to address the robust
strong group sparse problem provided in equation 6. Our approach
leverages OMP, allowing us to minimize the cost function with a
single regularized term in each iteration, and the algorithm termi-
nates when all required groups are selected rather than computing
all coefficients as in other sparse inversion methods. Therefore, our
method is simple, faster, and more straightforward for robustly solv-
ing the strong sparse problem.

CONCLUSION

We proposed a robust group sparse inversion algorithm that can
provide a better sparse estimation and is robust to erratic noise si-
multaneously. The essence of the proposed method is based on the
OMP. We divide the Radon coefficients in the f-p domain into dif-
ferent slowness groups. During each iteration, the algorithm se-
lected the group with the maximum norm. Subsequently, the
Radon coefficients located within all currently selected groups di-
rectly fit the seismic data in the t-x domain. The modified l1-l1

ADMM solver solves the coefficient optimization problem, which
makes the algorithm robust to erratic noise. Our tests on synthetic
and real-data examples prove the effectiveness and robustness of the
proposed method.
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