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ABSTRACT

In land seismic acquisition, the quality of common-shot gath-
ers is severely degraded by wind turbine noise (WTN) when wind
turbines are operating continuously in survey areas. The high-am-
plitude WTN overlaps or even completely submerges the body
and surface waves (signals). Through time-space and frequency
analysis, three main features of the WTN are observed: (1) it is
periodic with nearly constant frequencies over time, (2) it is co-
herent but exhibits different apparent velocities in space, and (3) it
has relatively narrow bands with varying central frequencies. The
first feature enables WTN to distort signals from shallow to deep,
whereas the latter two features make traditional methods that
separate noise and signals based on velocity and frequency
differences less effective. To suppress the WTN, we first analyze
its formation and propagation mechanism and then develop a
WTN simulation model to validate the presented mechanism.

Based on our analysis of WTN and signals, we consider
common-shot gathers as the linear superpositions of periodic
WTN and relatively broadband signals (referred to as low-oscil-
latory signals). This additive mixture aligns with the feasibility
premise of morphological component analysis (MCA). Finally,
based on MCA theory, we develop a sparsity-promoting separa-
tion method to suppressWTN in common-shot gathers. To imple-
ment our separation method, we construct two dictionaries using
the tunable Q-factor wavelet transform (TQWT) and the discrete
cosine transform (DCT). TQWT and DCT can sparsely represent
the oscillating waves (signals) and periodic waves (WTN), re-
spectively. This work contributes to the existing knowledge of
WTN separation by modeling the periodicity of WTN and the
low-oscillatory behavior of a signal, rather than relying on veloc-
ity or frequency differences. Our method is tested on synthetic
and field data, and both tests demonstrate its effectiveness in sepa-
rating WTN and preserving signals.

INTRODUCTION

In land seismic acquisition, when wind turbines (Lyons et al.,
2008; Walling et al., 2011) are operating continuously in the survey
area, the quality of seismic data is severely degraded by wind tur-
bine noise (WTN). The operation of wind turbines primarily in-
volves the conversion of mechanical energy generated by the
periodic rotations of blades and gears, as well as other components,
into pressure energy that creates periodic impact pressure forces.
The recording of seismic waves produced by these forces are called

WTN, which significantly degrades data quality and impedes the
identification and extraction of waves used for seismic inversion.
Taking the three common-shot gathers contaminated by WTN

shown in Figure 1, as an example we observe that various linear
and hyperbolic WTN (the green arrows) are continuous in time
and coherent in space. The coverage radius of WTN from a wind
turbine is approximately 500 m, typically encompassing 25 neigh-
boring traces, as indicated by the green box. Within the coverage of
WTN, the body and surface waves from seismic sources referred to
as signals (the red arrows in Figure 1), which are typically used for
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seismic imaging and inversion, are overlapped or even completely
covered by WTN. Furthermore, WTN energy exhibits slow decay
over time and strong coherence in space and time, resulting in the
distortion of signals from shallow to deep. The WTN even com-
pletely submerges deep weak signals. In addition, the WTN in a
trace exhibits multiple central frequencies, and different traces con-
tain the WTN with distinct central frequencies. For instance, in Fig-
ure 2a–2d, we show the 84th, 150th, 357th, and 579th traces around
the four arrows in Figure 1, and their corresponding time-frequency
spectra are shown in Figure 2e–2h, respectively. In Figure 2f and 2g,
the WTN (the red arrows) exhibits multiple narrow bands with
strong amplitudes, particularly approximately 20 Hz as indicated
by the black arrows, while displaying relatively weaker amplitudes
for other central frequencies between 5 and 65 Hz. In Figure 2h, the
WTN shows a strong narrow band at 30 Hz, as marked with a black
arrow, and some harmonic frequencies are even observed at approx-
imately 80 Hz, indicated by the red arrow. The WTN interferes with
signals, ranging from 5 to 80 Hz, as shown in Figure 2e. The afore-

mentioned analysis highlights the necessity and challenge of WTN
separation. The diverse central frequencies of WTN are attributed to
the different operating states of wind turbines, which are primarily
influenced by time-varying wind speeds. Due to the diversity of
WTN and its overlap with signals in the time and frequency do-
mains, traditional filtering methods such as notch filtering and
f-k filtering, which aim to separate noise based on frequency and
velocity differences between noise and signals, are less effective.
An effective method for separating WTN is needed, but there has

been limited direct research on WTN separation. However, due to
the similarity between the narrow-band feature of WTN with a sin-
gle central frequency and the narrow-band noise with fixed central
frequencies (Li et al., 2021), such as drilling noise (Namuq and
Reich, 2010) and pumping noise (Brandon et al., 1999; Wang
et al., 2017), we have reviewed the following methods. Gao
et al. (2011) propose an autocorrelation algorithm to estimate the
narrow-band noise and subtract it using a cosine subtraction algo-
rithm. Namuq et al. (2013) estimate the frequency range of the
pumping noise in the continuous wavelet transform (CWT) domain
and subtract it from the input data. Lin et al. (2018) use the Kalman
filtering method to filter the pumping noise by predicting its frequen-
cies and amplitudes. Qu et al. (2021) decompose the received signals
into subcomponents using the empirical-mode decomposition and
then reconstruct the pumping noise by combining some selected sub-
components with adaptive weights. Although these methods have sat-
isfactory performance in separating narrow-band noise with fixed
central frequencies, they face challenges in separatingWTNwith vari-
ous central frequencies. As shown in Figures 1 and 2, the WTN from
different wind turbines at different locations exhibits multiple narrow
bands with diverse central frequencies, making it difficult to identify
its frequency ranges. WTN can be regarded as coherent noise in seis-
mic data, similar to ground roll (Beresford-Smith and Rango, 1988;
Liu et al., 2023) and harmonic noise (Lebedev and Beresnev, 2004).
The coherent noise is often separated using sparse transforms such as
the wavelet transform (Deighan and Watts, 1997; Yu and Garossino,
2005; Kulesh et al., 2007), the S-transform (Tao et al., 2020), and the
curvelet transform (Liu et al., 2018, 2021a). The precondition for
these methods is to find suitable transforms that can represent the
waves of interest with as few coefficients as possible. In other words,
the waves of interest are assumed to be sparsely represented by these

Figure 1. Three common-shot gathers consisting of WTN and sig-
nals. The WTN exhibits curve events (the two green arrows in the
first and third gathers) and linear events (a green arrow in the second
gather). The WTN mostly from one wind turbine is marked with the
green box in the third gather. The signals are mainly reflections (a
red arrow in the first gather and a red box in the second gather) and
surface waves (two red arrows in the second and third gathers).

Figure 2. Four traces from Figure 1 and their time-frequency spectra: (a–d) 84th, 150th, 357th, and 579th traces extracted from Figure 1 and
(e–h) their corresponding time-frequency spectra, respectively, where WTN energy exhibits narrow bands with different central frequencies
(the four red arrows in [f–h]) and the strongest WTN energy is approximately 20 and 30 Hz as indicated by the black arrows.
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suitable transforms. However, it remains challenging to find a single
transform that can sparsely represent complex seismic data, which are
superpositions of the WTN and signals from complex surfaces and
structures.
With the development of a sparse representation, the combination

of multiple sparse transforms, known as dictionaries, has shown en-
hanced capabilities for sparse representations of complex seismic data
compared with using a single transform. One notable approach that
uses a combination of dictionaries is morphological component analy-
sis (MCA) (Starck et al., 2004), which has been successful in decom-
posing complicated data into components with certain morphological
features. MCA has two assumptions. First, it assumes that complex
seismic data can be represented as a linear superposition of coherent
noise and other waves with different morphological features. Second,
each dictionary used in MCA is designed to sparsely represent a spe-
cific type of wave while being unable to sparsely represent other
waves. In the case of WTN and signals that exhibit significant mor-
phological differences, common-shot gathers can be considered as
their linear superpositions, satisfying the first assumption of MCA.
The selection of appropriate dictionaries is a crucial step in fulfill-

ing the second assumption of MCA. These dictionaries can be fixed
transforms that are specifically designed to represent certain types of
waves. Various studies have explored the use of different fixed sparse
transforms in MCA, to separate specific wave components in seismic
data. For instance, Yarham et al. (2006) use different curvelets to
model the varying oscillation degrees of reflections and ground roll,
enabling their separation through MCA. Wang et al. (2010) use the
local discrete cosine transform (DCT) to sparsely represent ground
roll, whereas the stationary symlet transform was used for represent-
ing reflections. In another MCA-based approach, Chen et al. (2017)
use the tunable Q-factor wavelet transform (TQWT) with low and
high Q-values to represent the low-oscillatory body waves and
high-oscillatory ground roll separately. Chen et al. (2018) exploit
the CWT and the DCT to achieve sparse representations of desired
signals and distributed acoustic sensing coupling noise. Liu et al.
(2022a) propose an MCA-based separation method that uses the
chirplet transform and the CWT to model the different directions be-
tween harmonic noise and reflections, effectively suppressing har-
monic noise while preserving reflections. In the tau-p domain, Liu
et al. (2022b) use the 2D stationary wavelet transform to match
the multiple reflection-refraction with the shape of points, whereas
the shearlet transform was used to represent the other waves with
the shape of curves. These studies demonstrate the versatility and
effectiveness of using different fixed sparse transforms for the
MCA-based separation. Apart from fixed transforms, the use of adap-
tive transforms in coherent noise attenuation has also been explored
in previous studies (Olshausen and Field, 1996; Aharon et al., 2006;
Rubinstein et al., 2010, 2013; Liu et al., 2019, 2021b; Guo et al.,
2021). Adaptive transforms offer flexibility by allowing updates
based on local data. However, in the context of MCA applications,
fixed transforms offer simplicity and can be directly applied based on
a professional understanding of the target waves and existing knowl-
edge of transforms. Considering our research on WTN and the
existing work on fixed transforms, our approach centers around using
fixed transforms to construct dictionaries for modeling the morpho-
logical features of WTN and signals. Based on MCA theory and the
dictionaries that we construct, this paper proposes a sparsity-promot-
ing separation method for effectively separating WTN from
common-shot gathers.

Our work can be summarized into three main contributions.
(1) We present the formation and propagation mechanism of
WTN and propose a WTN simulation model based on the presented
mechanism. By studying the formation and propagation mechanism
of WTN, we gain insights into the periodic and almost constant fre-
quency behavior of WTN in seismic gathers. To validate the ration-
ality of the presented mechanism, we simulate WTN based on the
proposed WTN simulation model and then compare the simulated
WTN with the actual WTN. (2) We develop a strategy for construct-
ing dictionaries using 1D DCT and TQWT to sparsely represent
WTN and signals. The presented formation and propagation mecha-
nism of WTN show that WTN in gathers is periodic and has almost
constant frequencies in time. In addition, signals shown in Figure 2e
have relatively broadband and low-oscillation behavior. Based on
the observed morphological features of WTN and signals, we as-
sume that each common-shot gather is a linear superposition of peri-
odic WTN and low-oscillatory signals. Accordingly, we construct
dictionaries using the TQWT with a low Q-value for representing
low-oscillatory signals and the 1D DCT for representing periodic
WTN. (3) We propose a separation method that combines MCA
with the constructed dictionaries to separate WTN trace by trace.
Our method is applied to synthetic and field data, and its effective-
ness is demonstrated by comparing the separated results with those
obtained using a high-energy noise attenuation method, which is
commonly used in the industry (Yu and Garossino, 2005). Overall,
our research contributes to the understanding of WTN, provides a
practical approach for their separation using MCA and constructed
dictionaries, and demonstrates the superiority of our method
through comparisons with existing noise attenuation techniques.
The rest of the paper is divided into five parts. The first part de-

scribes the analysis and modeling of WTN. The second part intro-
duces the separation method based on MCA. The third part depicts
our dictionary construction strategy, including the introduction of
the 1D DCT and the TQWT as well as the analysis of the utility of
the constructed dictionaries. The fourth part illustrates the synthetic
data and field data examples. Finally, in the fifth part, we present the
conclusions.

THE ANALYSIS AND MODEL OF WTN

Figure 3a shows one simple wind turbine structure, and
Figure 3b shows the typical drive train configuration of the wind
turbine (Oyague, 2009; Dong et al., 2012). In Figure 3b, three
blades are attached to the hub. The rotating speed of the blades (usu-
ally between 19 r/min [0.3167 r/s] and 35 r/min [0.5833 r/s]) is rel-
atively low and insufficient to generate power directly. However, the
gearbox shown in Figure 3b can increase the rotating speed of the
shaft with a typical gear ratio of 50. As a result, the rotating speeds
of the high-speed shaft are typically between 15.8 and 29.2 r/s. The
periodic motions of the rotating blades, gearbox, high-speed shaft,
and other operating components generate periodic impact pressure
forces that stimulate seismic waves near the ground surface. If we
use wðtÞ to denote the seismic response near the wind turbine gen-
erating one cycle impact pressure force, the entire seismic response
near the wind turbine can be modeled as

sðtÞ ¼ A
Xþ∞

n¼−∞
wðt − nτÞ; (1)
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where τ is the period of cycle impact pressure force and A is their
amplitude. The values of τ and A remain almost constant within one
shot time. If there are M different types of cycle impact pressure
forces, the entire seismic response near the wind turbine can be
modeled as

sðtÞ ¼
XM
m¼1

Am

Xþ∞

n¼−∞
wmðt − nτmÞ; (2)

where τm and Am represent the period and the amplitude of the mth
type of cycle impact pressure force, respectively.
The estimated apparent velocities of WTN shown in Figure 1

range between 600 and 1300 m/s, which differ from the velocities
of reflections but align with those of some surface waves. These
findings suggest that WTN directly reaches the receiver station
along the surface, as shown in Figure 3c. The dashed red lines

in Figure 3c show some wave propagation paths from the wind
turbine W2 to some nearby receivers.
We suppose that the apparent velocity of WTN is v. If one wind

turbine’s position is represented by ðx0; y0Þ, then the WTN gener-
ated by this wind turbine can be recorded by the receiver with posi-
tion ðxr; yrÞ:

sðx0; y0; xr; yr; tÞ ¼
1ffiffiffi
d

p s
�
t −

d
v

�

¼ 1ffiffiffi
d

p
XM
m¼1

Am

Xþ∞

n¼−∞
wm

�
t − nτm −

d
v

�
; (3)

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 − xrÞ2 þ ðy0 − yrÞ2

q
: (4)

If there are multiple wind turbines in one survey, the recorded WTN
by one receiver can be obtained by the linear superposition of the
WTN generated by multiple turbines.
Usually, the high-speed shaft’s rotation is a main WTN source.

The typical high-speed shaft’s rotating speed is between 15.8 and
29.2 r/s, leading to seismic responses with the central frequencies
between 15.8 and 29.2 Hz. Accordingly, the central frequencies of
the strongest WTN should be between 15.8 and 29.2 Hz. The field
WTN in the time-frequency domain, as shown in Figure 2f–2h, has
dominant energy near 20 and 30 Hz, which indicates that the high-
speed shaft’s rotation is a main WTN source.
Based on the main energy of approximately 30 and 20 Hz of typ-

ical WTN in the field data, we initially define two types of periodic
impact pressure forces generated by each wind turbine. The periods,
τ1 and τ2, are set to 0.033 and 0.05 s, respectively. In addition, to
make the features (e.g., waveform and frequency distribution) of the
synthetic WTN similar to that of the field WTN shown in Figure 2b
and 2d, we set w1ðtÞ to a 30 Hz Ricker wavelet and w2ðtÞ to a 20 Hz
Ricker wavelet. The synthetic traces corresponding to these param-
eters are shown in Figure 4a and 4b, respectively, each consisting of
1000 samples. Figure 4c shows their direct summation. The time-
frequency spectra of Figure 4a–4c are shown in Figure 4d–4f, re-
spectively. Similar to the observations in Figure 2f–2h, the main

Figure 3. Demonstration of WTN propagation and formation
mechanism: (a) wind turbine structure, (b) drive train configuration
of the wind turbine, and (c) schematic diagram of a 3D seismic ob-
servation system.

Figure 4. Synthetic WTN traces from the proposed simulation model. (a–c) Three synthetic traces and (d–f) their corresponding time-
frequency spectra, respectively.
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energy of WTN in Figure 4d–4f is approximately 20, 20, and 30 Hz.
In addition, there are several bands with relatively weaker energy
with their central frequencies shifting between 5 and 65 Hz. How-
ever, a noticeable difference is the presence of more visible side-
lobes near 30 and 20 Hz in Figure 4d and 4e compared with
Figure 2h and 2f. This inconsistency arises because field data con-
tain more diverse waves than synthetic data. Some sidelobes near 20
or 30 Hz in Figure 2f and 2h are invisible, but their amplitudes are
much weaker than those of other bands in the frequency domain.
These observations serve to validate the rationality of the presented
time-frequency model of WTN.
To synthesize the WTN in one 2D data set, we also set the periods,

τ1 and τ2, to 0.033 and 0.05 s, respectively. In addition, we set w1ðtÞ
to a 30 Hz Ricker wavelet and w2ðtÞ to a 20 Hz Ricker wavelet. The
amplitude ofw1ðtÞ is set to two, whereas the amplitude ofw2ðtÞ is set
to 10. Using the observation system shown in Figure 3c, we simulate
the WTN generated by six wind turbines W1;W2; : : : ;W6 and
propagating to the receiver line A. Figure 5 shows the direct summa-
tion of the simulated WTN, comprising 240 traces and 1000 samples
per trace. The sampling interval between samples is 0.002 s. The dis-
tance between two adjacent traces is 20 m. In Figure 5, the coverage
radius of theWTN induced by each wind turbine is 500 m. TheWTN
generated by the wind turbines on receiver line A (W1 and W3)
appears as linear events, whereas the WTN generated from other
turbines (W2, W4, W5, and W6) appears as hyperbolic events. This
observation is consistent with the characteristics of WTN observed in
the common-shot gather, as shown in Figure 1.

SEPARATION METHOD BASED ON MCA

The MCA is a general model used for separating a complex data
set s into its constituent components s1; s2; : : : ; sn, each with differ-
ent morphological features. In the context of MCA, a complex data
set is considered to be a linear superposition of n components:

s ¼
Xn
i¼1

si: (5)

Each component si; i ∈ f1; : : : ; ng is assumed to be reconstructed
by a sparse representation xi of a dictionary Di, that is, si ¼ Dixi.
Based on these assumptions, the separation problem is

fxopti gni¼1 ¼ argmin
fxigni¼1

Xn
i¼1

kxik1 þ λ

����s −
Xn
i¼1

Dixi

����
2

2

; (6)

where xopti is the sparse representation of a component to be sep-
arated and λ is a Lagrange multiplier. Here, sopti ¼ Dix

opt
i is the sep-

arated component. The problem in equation 6 is usually solved by
the block coordinate relaxation algorithm (Bruce et al., 1998).
In this paper, a seismic trace s ∈ RLs having Ls samples consists

of the signals s1 and the WTN s2, which is expressed as

s ¼ s1 þ s2: (7)

Based on MCA, sparse representations xopt1 and xopt2 of s1 and s2,
respectively, are computed by solving the following problem:

fxopt1 ;xopt2 g¼argmin
fx1;x2g

× kx1k1þkx2k1þλ

����s−
X2
i¼1

Dixi

����
2

2

;

(8)

where D1 and D2 are the preconstructed dictionaries for s1 and s2,
respectively, and sopt1 ¼ D1x

opt
1 and sopt2 ¼ D2x

opt
2 are the separated

WTN and signals, respectively. The MCA used for WTN separation
is effective on the premise that the dictionary D1 in equation 8
sparsely represents the signals and is highly ineffective in represent-
ing the WTN, whereas the dictionary D2 in equation 8 sparsely rep-
resents the WTN and is highly ineffective in representing the
signals.
If the morphological features of the waveform atom of one trans-

form match that of a specific wave, the transform exhibits a strong
sparse representation capability for that wave. As shown in Figures 1,
2, and 4, WTN exhibits periodicity in the time domain and relatively
narrow frequency bands, whereas signals display low oscillation
in the time domain and wider frequency bandwidths. These morpho-
logical differences serve as a guide for selecting appropriate diction-
aries. In this regard, the 1D DCT is well-suited for sparsely
representing periodic waves, whereas the TQWT with a small
Q-value is effective in representing low-oscillation waves. Therefore,
we anticipate that the 1D DCT and TQWT serve as representative
dictionaries for WTN and signals, respectively.

DICTIONARY CONSTRUCTION STRATEGY

The first two parts of this section, respectively, introduce the
TQWT and the 1D DCT, which we have selected to meet the re-
quirements of the MCA-based WTN separation. Subsequently,
we provide a brief explanation for why we have chosen TQWT
and 1D DCT to represent signals and WTN, respectively. In the
third part, we conduct a detailed analysis to assess the utility of
chosen dictionaries.

Tunable Q-factor wavelet transform

The TQWTuses filter banks in the frequency domain to represent
waveforms. It consists of a high-pass filter GjðfÞ and a low-pass
filter HjðfÞ at a wavelet-level j ∈ f1; 2; : : : ; Jg where J is the

Figure 5. Simulated WTN generated by wind turbines W1;W2; : : : ;
W6 and received by the receiver line A in Figure 3c, respectively, and
the name of the turbine corresponding to the WTN is given in red at
the bottom of the figure.
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number of the filtering bank (Selesnick, 2011a). The low-pass out-
put of each filter bank is used as the input to the successive filter
bank. For an input signal sðtÞ with a sampling rate of fs, the main
flow of a TQWT is shown in Figure 6, where j ∈ f1; : : : ; Jg, αj is a
low-passed signal, βj is a high-passed signal, andG−

j ðfÞ andH−
j ðfÞ

are the reconstruction functions. Here, GjðfÞ and HjðfÞ depend on
two scaling parameters b1; b2 ∈ ð0; 1� that are

b1 ¼ 2=ðQþ 1Þ; b2 ¼ 1 − b1=r; (9)

where Q is the Q-value and r is the redundancy factor. The redun-
dancy factor is defined as the ratio of the total number of coeffi-
cients representing a wave and the original number of sampling
points of the wave. Here, Q plays a significant role as it affects
the oscillation degree of the TQWT atom waveform. The Q-value
is expressed as

Q ¼ f0
BW

; (10)

where f0 is the central frequency of the wave-
form atom and BW is its bandwidth. Based on
equations 9 and 10, the frequency responses of
H0ðfÞ and G0ðfÞ are expressed as

H0ðfÞ ¼

8>>><
>>>:

1 jfj ≤ ð1 − b1Þπ

θ

�
fþðb1−1Þπ
b2þb1−1

�
ð1 − b1Þπ < jfj < b2π

0 b2π ≤ jfj ≤ π

;

G0ðfÞ ¼

8>>><
>>>:

0 jfj ≤ ð1 − b1Þπ

θ

�
b2π−f

b2þb1−1

�
ð1 − b1Þπ < jfj < b2π

1 b2π ≤ jfj ≤ π

; (11)

where θðfÞ ¼ 0.5ð1þ cos fÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − cos f

p
; jfj ≤ π. Here, Hj>0ðfÞ

and Gj>0ðfÞ are calculated based on H0ðfÞ and G0ðfÞ
(Selesnick, 2011b). By increasing the value of Q, the waveform
atoms of the TQWT become more oscillatory. The wavelet-level
j does not significantly affect the overall shape of the waveform
of the TQWT in the frequency domain. Assuming a redundancy
factor of 3 (r = 3), Figure 7 shows two TQWT atoms with Q-values
of two and five, respectively, showcasing different degrees of oscil-
lation. From the preceding discussion, it is evident that adjustable
Q-values allow TQWT to flexibly match the oscillation behaviors of
waves, and selecting an appropriate Q-value is crucial for construct-
ing a TQWT dictionary for signals with low oscillation.
As described by Selesnick (2011a), r is recommended to be three

or greater to align the TQWT atoms with the fast decay of seismic
wavelets. Hence, we only focus on estimating the Q-value. We
calculate the Q-value based on the central frequency and bandwidth
of the local data segments occupied by signal energy in given data,
rather than selecting a Q-value empirically. For illustration pur-
poses, field data are used in this section. Although pure signals
do not exist in reality, data fragments that are dominated by signal
energy can be approximately treated as pure signals. Thus, a data
fragment in the red box in Figure 1, spanning from the 330th to
340th traces and from 0.48 to 0.70 s, which is dominated by signal
energy, is taken as a reference for estimating the Q-value of TQWT.
Figure 8a shows the average amplitude spectrum of this data frag-
ment. Its central frequency is approximately 35 Hz, and its band-
width is approximately 30 Hz, resulting in a ratio of approximately
one. In comparison, Figure 8b and 8c, respectively, shows the wave-
form atom of the TQWTwithQ = 1 and its frequency spectrum. The
spectrum in Figure 8c exhibits a central frequency of approximately

Figure 6. The main flow of the decomposition and reconstruction of the TQWT.

Figure 7. Two TQWTatoms: (a) the atom with r = 3 andQ ¼ 2 and
(b) the atom with r = 3 and Q ¼ 5.

Figure 8. Comparison between the signal-dominated data segment
and the waveform of the constructed TQWT. (a) Average amplitude
spectra of the data of 330th to 340th traces and 0.48–0.70 s in Fig-
ure 1 and the dotted red curve is its fitted energy envelope, (b) wave-
form of the TQWT (Q = 1), and (c) frequency spectrum of the
waveform in (b).
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30 Hz and a bandwidth of approximately 35 Hz, which closely re-
sembles the spectrum shown in Figure 8a. This similarity indicates
that the oscillation of the waveform of the TQWT with Q = 1
matches the oscillation of the data segment dominated by signal
energy. Therefore, the TQWT with Q = 1 is used as the dictionary
for representing signals.

1D discrete cosine transform

The 1D DCT is derived from the discrete Fourier transform. It
works with fixed parameters. The sparse presentation of the 1D
DCT of a discrete waveform s½·� with the length of n is

xDCT½k� ¼ Ak

Xn−1
u¼0

s½u� cos ð0.5þ uÞkπ
n

; k ¼ 0; : : : ; n − 1;

Ak ¼

8>><
>>:

ffiffi
1
n

q
k ¼ 0.ffiffi

2
n

q
k > 0 .

(12)

The recovered waveform ŝDCT½·� is

ŝDCT½u�¼
Xn−1
k¼0

AkxDCT½k�cos
ð0.5þuÞkπ

n
; u¼0; :::;n−1:

(13)

Figure 9a and 9b shows the waveform of an atom in 1D DCTand its
corresponding time-frequency spectrum, respectively. In Figure 9a,
the atom exhibits temporal continuity and periodicity. In Figure 9b,
it appears as a relatively narrow band. These findings suggest that
the periodicity of a 1D DCT atom matches the periodicity of WTN.
Thus, we choose the 1D DCT as the dictionary for represent-
ing WTN.

Analysis of the feasibility of the chosen dictionaries

As described in the “Separation method based on MCA” section,
a prerequisite of the MCA-based WTN separation is to construct
two dictionaries. One dictionary sparsely represents signals and
does not sparsely represent WTN, whereas the other sparsely rep-
resents WTN and does not sparsely represent signals. To assess the
feasibility of the chosen dictionaries, we use a sparsity function
(Hoyer, 2004) to quantify the sparsity of various waves represented

Figure 9. (a) The waveform of an atom in the 1D DCT and (b) the
time-frequency spectrum of (a).

Figure 10. A trace of synthetic signal.

Table 1. Comparison of the sparsity of four different dictionaries in representing four typical traces, which are dominated by
the field signal (Figure 2a), synthetic signal (Figure 10), field WTN (Figure 2b), and synthetic WTN (Figure 4c), respectively.

Dictionaries

The main waveform in a trace

Synthetic signal
(Figure 10)

Synthetic WTN
(Figure 4c)

Field signal
(Figure 2a)

Field WTN
(Figure 2b)

TQWT (with Q = 1) 0.7856 0.3880 0.8124 0.3832

1D DCT 0.6527 0.8707 0.6052 0.8753

CWT (Morlet) 0.7564 0.5896 0.8534 0.6667

SWT (biorthogonal) 0.8169 0.5659 0.8766 0.6557

Figure 11. The 1D and 2D synthetic data examples. (a–c) Three
contaminated traces obtained by adding the synthesized signals
(Figure 10) to WTN shown in Figure 4a–4c, respectively; (d) syn-
thetic signal; and (e) 2D contaminated data obtained by adding the
synthetic signal (d) to the synthetic WTN shown in Figure 5.
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by four different transforms: TQWT with Q = 1 (selected for sig-
nals), 1D DCT (selected for WTN), CWT (Morlet), and the station-
ary wavelet transform with the biorthogonal wavelet (SWT
[biorthogonal]). The sparsity is measured based on the total number
of coefficients, denoted as L, in a representation matrix x obtained
by applying a transform to input data. This sparseness function is

sparsenessðxÞ ¼
ffiffiffiffi
L

p
− kxk1=kxk2ffiffiffiffi

L
p

− 1
: (14)

Here, sparsenessðxÞ ¼ 1 if and only if x has only one nonzero com-
ponent equal to one, that is, the closer to 1 the value of
sparsenessðxÞ is, sparser the x is.
To compare the sparsity of signals and WTN represented by the

four transforms, we analyze four traces dominated by field signal
(Figure 2a), synthetic signal (Figure 10), field WTN (Figure 2b),
and synthetic WTN (Figure 4c). The sparsity values are calculated
in formula 14 using these traces and four transforms, which are pre-
sented in Table 1. From Table 1, we observe that the sparsity values
of the two signal-dominated traces represented by TQWT (0.7856
and 0.8124) are much closer to one compared with the sparseness
values of the two WTN-dominated traces represented by the TQWT
(0.3880 and 0.3832). Similarly, the sparsity values of the twoWTN-
dominated traces represented by the 1D DCT (0.8707 and 0.8753)
are much closer to one than the sparseness values of the two signal-
dominated traces represented by the 1D DCT (0.6527 and 0.6052).

Figure 12. A comparison of separation results for three contaminated
traces shown in Figure 11a–11c. (a–c) Original synthetic signals (the
red curves), the separated synthetic signals obtained by applying the
proposed method (the black curves), and the conventional method
(the green curves), respectively, and (d–f) the original synthetic
WTN (the red curves), the separated synthetic WTN obtained by ap-
plying the proposed method (the black curves), and the conventional
method (the green curves), respectively.

Figure 13. A comparison of separation results for the contaminated
2D data shown in Figure 11e. (a and b) Separated signals and WTN
obtained by applying the proposed method and (c and d) separated
signals and WTN obtained by applying the conventional method,
and a region with the signal damage (red arrow in [c]).

Figure 14. Second synthetic data example: (a) synthetic surface
waves, (b) synthetic direct waves (green arrow) and reflections
and refractions (two red arrows), (c) synthetic WTN, and (d) the
contaminated data consisting of waves shown in (a–c).

Table 2. The S/N comparison of the separated signals for three typical traces (Figure 11a–11c) and 2D synthetic data (Figure 11e).

Traces (Figure 11a–11c)

First Second Third 2D data (Figure 11e)

Contaminated (dB) −14.1 −27.8 −28.1 −23.5
Separated (dB) The proposed method 20.1 13.5 13.3 19.9

The conventional method 13.1 5.0 5.4 11.3
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In addition, in Table 1, the sparsity differences between the syn-
thetic signal- and noise-dominated traces represented by the
CWT (Morlet) and the SWT (biorthogonal) (0.1664 and 0.2510),
respectively, are smaller than the sparsity difference between those
represented by the TQWT (0.3976). Moreover, the sparsity
differences between the field signal- and noise-dominated traces
represented by the CWT (Morlet) and the SWT (biorthogonal)
(0.1867 and 0.2209), respectively, are also smaller than the sparsity
difference between those represented by the TQWT (0.4292). These
results indicate that the TQWT exhibits a clearer distinction in rep-
resenting signals andWTN in terms of sparsity than the CWT (Mor-
let) and the SWT (biorthogonal). In summary, the comparisons in
Table 1 demonstrate two important facts: (1) the 1D DCT represents

WTN-dominated traces much more sparsely than the signal-domi-
nated traces it represents and (2) the TQWT with Q = 1 represents
signal-dominated traces much more sparsely than the WTN-domi-
nated traces it represents.
The facts presented here provide evidence that the constructed

TQWT and 1D DCT dictionaries fulfill the prerequisite of the
MCA-based WTN separation, as mentioned in the initial sentences
of this section.

EXAMPLE

This section aims to demonstrate the effectiveness of the pro-
posed method, which uses MCA with the TQWT (Q = 1) and the
1D DCT, on synthetic data and common-shot gathers. The high-en-
ergy noise attenuation method in the stationary biorthogonal-wave-

Figure 15. A comparison of separation results for the second syn-
thetic data example shown in Figure 14d (some surface waves are
marked with red arrows in [a–d] and direct waves are marked with a
green arrow in [d]). (a and b) Separated signals and WTN obtained
by applying the proposed method and (c and d) separated signals
and WTN obtained by applying the conventional method.

Figure 17. Comparison of time-frequency spectra of the 25th conta-
minated trace in the second synthetic data example (some areas with
obvious amplitude differences are marked with the red arrows in [d, f
and g]). (a) Time-frequency spectrum of the contaminated trace; (b
and c) time-frequency spectra of the signal and WTN contained in
the contaminated trace, respectively; (d and e) time-frequency spectra
of the separated signal and WTN obtained by applying the proposed
method, respectively; and (f and g) time-frequency spectra of the sep-
arated signal and WTN obtained by applying the conventional
method, respectively.

Figure 16. Comparison of the 25th contaminated trace in the second
synthetic data example. (a) The 25th contaminated trace; (b) original
signal contained in the contaminated trace (red curve), the separated
signal obtained by applying the proposed method (black curve), and
the conventional method (green curve), not some areas with obvious
amplitude differences are marked with the red arrows; and (c) original
WTN contained in the contaminated trace (red curve), the separated
WTN obtained by applying the proposed method (black curve), and
the conventional method (green curve).
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let transform domain (Yu and Garossino, 2005) is selected as the
conventional method for comparison.

First synthetic data application

In this part, we evaluate the performance of the proposed method
using synthetic traces and common-shot gathers. First, we add the
signals shown in Figure 10 to the WTN shown in Figure 4a–4c, re-
sulting in three contaminated traces displayed in Figure 11a–11c. In
addition, Figure 11d shows six synthetic signal events synthesized
using the Ricker wavelet with a central frequency of 30 Hz. The con-
taminated data shown in Figure 11e are a summation of the synthetic
WTN from Figure 5 and the synthetic signals from Figure 11d.
The separated results for three synthetic traces (Figure 11a–11c)

are shown in Figure 12. All of the separated results exhibit the sig-
nals and WTN that closely resemble the original signals and WTN
(the red curves). However, compared with the separated signals and
WTN obtained from the conventional method (the green curves),
the separated signals and WTN obtained from the proposed method
(the black curves) are closer to the original signals and WTN. Fig-
ure 13a and 13b, respectively, shows the separated signals andWTN
obtained by applying the proposed method to the synthetic gather
(Figure 11e). Figure 13c and 13d, respectively, shows the separated
signals and WTN obtained by applying the conventional method to

the same synthetic gather. Figure 13a exhibits clearer signals than
Figure 13c where some signal damages are indicated by a red arrow.
The signal-to-noise ratios (S/Ns) of the contaminated data and sep-
arated signals are provided in Table 2. Although the S/Ns of the
separated results are all higher than those of the contaminated data,
the S/Ns of the separated signals from the proposed method are 7,
8.5, 7.9, and 8.6 dB higher than those of the separated signals from
the conventional method, respectively. These results demonstrate
that the proposed method is more effective in separating synthetic
WTN and preserving synthetic signals compared with the conven-
tional method.

Second synthetic data application

In this part, we use two modeling techniques to generate the seis-
mic components for our analysis. First, we use the ground-roll mod-
eling method described by Chen et al. (2017) to generate the ground
roll shown in Figure 14a. The ground roll is obtained using the
Fuchs-Muller wavelet with a dominant frequency of 8 Hz. Second,
we apply the reflection-refraction modeling method described by
Hu et al. (2022) to generate refractions (indicated by the red arrows)
and direct waves (indicated by a green arrow) shown in Figure 14b.
These synthetic components have a central frequency of 30 Hz and
are obtained from a four-layer geologic model with a 30 Hz Ricker

Figure 18. A comparison of separation results for three common-shot gathers shown in Figure 1 (some areas with obvious amplitude differences are
marked with red boxes and green arrows). (a and c) Separated signals and WTN obtained by applying the proposed method and (b and d) separated
signals and WTN obtained by applying the conventional method.
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wavelet as an explosive point source. The first two layers in the
model consist of a low-velocity layer with a thickness of 80 m
and a velocity of 800 m/s, followed by a high-velocity layer with
a thickness of 300 m and a velocity of 2500 m/s. The high-velocity
layer is located beneath the low-velocity layer, and the remaining
layers in the model are determined using the Gardner formula
(Gardner et al., 1974).
To generate the contaminated data for our analysis, we take the

first 100 traces and the time interval from 0 to 1.6 s from the WTN
shown in Figure 5 and double its amplitude. Figure 14c shows the
selected WTN with the doubled amplitude. Finally, the contami-
nated data shown in Figure 14d are the direct summation of the
synthetic WTN shown in Figure 14c and the signals including
the waves shown in Figure 14a and 14b. It has 100 traces and
800 samples per trace and a sample interval of 0.002 s.
The MCA with the TQWT (Q = 1) and the 1D DCT is the pro-

posed method and the stationary biorthogonal-wavelet transform is
the conventional method. Figure 15a and 15b shows separated sig-
nals and WTN from the proposed method, respectively. Figure 15c
and 15d shows separated signals and WTN from the conventional
method, respectively. Compared with the contaminated data shown
in Figure 14d, Figure 15a and 15c exhibits clearer signals, whereas
Figure 15b and 15d shows some leaked ground roll (the red arrows).
However, Figure 15c exhibits noticeable leaked refractions (the red
arrow) that are not present in Figure 15a at the same location. In
addition, Figure 15d shows some leaked direct waves (the green
arrow).
For further comparison, Figure 16a displays the 25th trace from

the contaminated data shown in Figure 14d. Figure 16b displays
three traces: the pure signal (a red curve) contained in the trace
shown in Figure 16a, the separated signal from the proposed
method (a black curve), and the separated signal from the conven-
tional method (a green curve). Figure 16c also displays three traces:
the pure WTN (a red curve) contained in the trace shown in Fig-
ure 16a, the separated WTN from the proposed method (a black
curve), and the separated WTN from the conventional method (a
green curve). In Figure 16b and 16c, the separated results from
the proposed method (the black curves) are much closer to the origi-
nal signal and WTN (the red curves) than the separated results from
the conventional method (the green curves), particularly in the re-
gions marked with the red arrows.
Figure 17a displays the time-frequency spectra of the contami-

nated trace shown in Figure 16a. Figure 17b and 17c shows the
time-frequency spectra of the pure signal and WTN, respectively.
Figure 17d and 17e shows the time-frequency spectra of the sepa-
rated signal and WTN from the proposed method, respectively. Fig-
ure 17f and 17g shows the time-frequency spectra of the separated
signal and WTN from the conventional method, respectively. Com-
pared with Figure 17a, Figure 17d and 17f shows clearer signal en-
ergy, whereas Figure 17e and 17g shows clearer WTN energy.
According to Figure 17b and 17c, Figure 17d shows more signal
energy than Figure 17f, especially in the same locations around
the red arrows, whereas Figure 17g exhibits some leaked signal
energy around a red arrow.
These results indicate that the proposed method is effective in

separating synthetic WTN and synthetic signals, including direct
waves, refractions, and surface waves. It demonstrates better perfor-
mance in preserving the original signal compared with the conven-
tional method.

First field data application

In this section, three gathers shown in Figure 1 are taken to
demonstrate the performance of the proposed method (MCA with
the TQWT [Q = 1] and the 1D DCT) and the conventional method
(stationary biorthogonal-wavelet transform) for the separation of
signals and WTN. The separated signals and WTN from the pro-
posed method are shown in Figure 18a and 18c, respectively,
whereas the separated signals and WTN from the conventional
method are shown in Figure 18b and 18d, respectively. We observe
that Figure 18a exhibits clearer signals than Figure 18b, particularly
in regions indicated by the green arrows. In addition, Figure 18d
exhibits signal leakage around the location marked with a green
arrow, whereas Figure 18c has almost invisible signal leakage
around the same location marked with a green arrow.
To further analyze the results, the f-k spectra of the first gather are

shown in Figure 19a–19e, corresponding to the input data (Figure 1)
and the separated results (Figure 18a–18d). The WTN is represented
by the various frequency bands (the red arrows) in Figure 19a. More
WTN energy is retained around the red arrows in Figure 19c than the
same locations in Figure 19b. In addition, Figure 19d shows more
separated WTN energy around the red arrows compared with

Figure 19. Comparison of the f-k spectra of the original first gather
in Figure 1 (some WTN energy is marked with the red arrows in [a,
c, and d]). (a) The f-k spectrum of the original first gather; (b and
c) the f-k spectra of the separated signals obtained by applying the
proposed method and the conventional method to the first gather,
respectively; and (d and e) the f-k spectra of the separated WTN
obtained by applying the proposed method and the conventional
method to the first gather, respectively.
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Figure 19e. For a detailed examination, Figure 20 provides a mag-
nified view of the data within the red boxes in Figure 18, along with
the original data from the same location in Figure 1. Figure 20a dis-
plays the input data, Figure 20b and 20c shows the separated results
obtained by applying the proposed method, and Figure 20d and 20e
shows the separated results obtained by applying the conventional
method. Figure 20b exhibits clearer signals than Figure 20d, espe-
cially around the areas marked with red arrows. Figure 20e shows
the leakage of signals, such as the reflection leakage marked with
a red arrow, whereas Figure 20c shows no visible signals around
the same area marked with a red arrow. Furthermore, Figure 21a
shows the contaminated 78th trace in Figure 20a. Figure 21b and
21c shows the separated signals obtained by applying the proposed
method and the conventional method to the contaminated 78th trace,
respectively. Figure 21d and 21e shows separated WTN obtained by
applying the proposed method and the conventional method to the

Figure 22. Time-frequency spectra of the 78th trace’s time-fre-
quency spectra for the third gather in Figure 1 (some areas with am-
plitude differences are marked with the dotted red boxes in [b–e] and
the WTN energy in [c] is marked with a red arrow). (a) Time-fre-
quency spectrum of the original 78th trace between 0 and 3 s;
(b and c) time-frequency spectra of the separated signals obtained
by applying the proposed method and the conventional method, re-
spectively; and (d and e) time-frequency spectra of the separated
WTN obtained by applying the proposed method and the conven-
tional method, respectively.

Figure 21. A comparison of the 78th trace’s separation results for
the third gather in Figure 1 (some areas with amplitude differences
are marked with the dotted red boxes in [b–e]). (a) The original 78th
trace between 0 and 3 s; (b and d) separated signals and WTN ob-
tained by applying the proposed method, respectively; and (c and
e) separated signals and WTN obtained by applying the conven-
tional method, respectively.

Figure 20. A magnified view of the separation results (the red boxes
in Figure 18) (some areas with amplitude differences are marked with
the red arrows in [b–e]). (a) The original third gather; (b and c) sep-
arated signals and WTN obtained by applying the proposed method,
respectively; and (d and e) separated signals and WTN obtained by
applying the conventional method, respectively.
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contaminated 78th trace, respectively. The time-frequency spectra of
Figure 21a–21e are shown in Figure 22a–22e, respectively. Compar-
ing separated signals shown in Figure 21b and 21c with the conta-
minated 78th trace, both results from the proposed method and the
conventional method show clearer signals. However, there are
notable differences in the data bounded by the dashed red boxes in
Figure 21b–21e, and their main energy is highlighted by the dashed
red boxes in Figure 22b–22e. Figure 22c shows WTN energy (a red
arrow). Figure 22b exhibits no visible WTN energy but more signal
energy than Figure 22c, especially in the areas within the dashed
boxes. Figure 22d shows no visible signal energy within the dashed
red box, whereas Figure 22e shows the leakage of signal energy
within the same area (a dashed red box). These results indicate that
the proposed method is more effective in separating WTN from

common-shot gathers and better preserves signals compared with
the conventional method.

Second field data application

A common-shot gather shown in Figure 23a is used as an exam-
ple in this section. It is acquired in the same survey as the data used
in the previous section (Figure 1), but they are acquired in different
regions. In addition, the gather shown in Figure 23a is contaminated
with some WTN (the second green arrow) whose energy obviously
increases at approximately 4 s, but the gathers shown in Figure 1
mainly contain the WTN having consistent energy over time.
Figure 23b and 23c shows separated signals from the proposed

method and the stationary biorthogonal-wavelet transform (the
conventional method), respectively. Figure 23d and 23e shows sep-
arated WTN from the proposed method and the conventional
method, respectively. Figure 23b and 23c shows clearer signals than
Figure 23a. Figure 23b shows less WTN than Figure 23c, especially
around the green arrows. There is signal leakage in Figure 23e (a red
arrow), whereas there is no visible signal in the same location in
Figure 23d. Figure 24a displays the f-k spectrum of the original data
shown in Figure 23a. Figure 24b and 24c shows the f-k spectra of

Figure 24. Comparison of the f-k spectra of the second field data
example (some WTN energy is marked with the red arrows in [a, c,
and (d]). (a) The f-k spectrum of the second field example data; (b
and c) the f-k spectra of the separated signals obtained by applying
the proposed method and the conventional method, respectively;
and (d and e) the f-k spectra of the separated WTN obtained by
applying the proposed method and the conventional method, re-
spectively.

Figure 23. Second field data example (some areas contaminated
with the WTN are marked with the green arrow and some signals
are marked with the red arrows in [a and e]; the strongest signals
are indicated by the red boxes). (a) A common-shot gather contami-
nated with some WTN having inconsistent energy in time; (b and
c) separated signals from the proposed method and the conventional
method, respectively; and (d and e) separated WTN from the pro-
posed method and the conventional method, respectively.
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separated signals from the proposed method and the conventional
method, respectively. Figure 24d and 24e shows the f-k spectra of
separated WTN from the proposed method and the conventional
method, respectively. Figure 24b and 24c shows clearer signal en-
ergy than Figure 24a, but Figure 24c shows obvious WTN energy
around the red arrows. Figure 24d and 24e shows the strongest
WTN energy, but Figure 24d shows more WTN energy around
the red arrows than Figure 24e. For further comparison, Figure 25
shows a magnified view of the data in the red boxes in Figure 23.
Figure 25a shows the original data. Figure 25b and 25c shows sep-
arated signals and WTN from the proposed method, respectively.
Figure 25d and 25e shows separated signals and WTN from the
conventional method, respectively. The signals covered by WTN
in Figure 25a are visible in the locations marked with the red arrows
in Figure 25b, but they are still unclear in the locations marked with

the red arrows in Figure 25d. There is signal leakage in Figure 25e
(a red arrow), whereas there are no visible signals at the same
location in Figure 25c.
These results demonstrate that the proposed method can effec-

tively separate the signals and WTN acquired in different locations
in a survey.

CONCLUSION

This paper focuses on the formation and propagation mechanism
of WTN in common-shot gathers and presents a rational WTN sim-
ulation model based on the mechanism of WTN. The proposed
method for WTN separation is a trace-by-trace MCA-based method
with constructed DCT and TQWT dictionaries, which avoids the
need for spatial smoothing and the knowledge of wind turbine lo-
cations. The DCT and TQWT dictionaries are chosen to represent
the periodic WTN and the low-oscillatory signals, satisfying the
prerequisites of MCA. Moreover, we provide guidance on deter-
mining the appropriate Q-value for the TQWT dictionary. The ratio
of the central frequency and bandwidth of the average amplitude
spectrum of a signal-dominated data segment selected from given
gathers can serve as an estimated Q-value for the TQWT dictionary.
The synthetic and field data tests validate the effectiveness of the
proposed method in separating WTN and preserving signals. The
results demonstrate the effective separation of WTN and the pres-
ervation of signals.
In future work, we plan to explore the adaptation of high-dimen-

sional dictionaries for modeling the morphological features of com-
plex noises or signals. This involves selecting appropriate noise- or
signal-dominated data segments and analyzing the formation and
propagation mechanisms to extract significant morphological fea-
tures. These tasks are important for further improving the under-
standing and separation of high-dimensional noises or signals in
practical applications.
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