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Abstract— During seismic acquisition, the received seismic data
typically comprise many components, such as effective reflections
and various interferences. Some components, such as industrial
electrical interference and traffic vibrations, manifest as the
equidistant narrowband discrete spectra (ENBD-spectra) in the
frequency domain. Morphological component analysis (MCA) is
widely used for separating different component from complicated
seismic data. Therefore, it has been successfully used to extract
the narrowband components from seismic data. However, the
conventional MCA method overlooks equidistant feature of
ENBD-spectra component in seismic data separation. In this
study, we propose an improved MCA method that uses the
interval between neighboring spectrum peaks as a constraint to
separating the data with ENBD-spectra component. Two types
of seismic datasets are used to show the proposed MCA’s effec-
tiveness. The first type of dataset contains industrial electrical
interference, while another type of dataset contains high-speed
train (HST)-induced seismic signals. Both synthetic data exam-
ples and real data examples show that the proposed method
has better performance in separating the seismic data with
ENBD-spectra component and keeping the fidelity of separation
compared with the conventional MCA method.

Index Terms— Continuous wavelet transform (CWT), discrete
Fourier transform (DFT), equidistant narrowband discrete spec-
tra (ENBD-spectra), morphological component analysis (MCA).

I. INTRODUCTION

SEISMIC exploration is one of the important means to
detect underground structures, which has been extensively

used in oil and gas exploration. However, the received seismic
dataset comprises a lot of components, including effective
reflections and other interferences which may seriously affect
seismic data processing and interpretation. Therefore, seismic
data separation is one vital step before seismic data processing
and interpretation.

Manuscript received 22 February 2024; revised 10 June 2024; accepted
25 June 2024. Date of publication 28 June 2024; date of current version
9 July 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021YFA0716904, in part by
the National Natural Science Foundation of China under Grant 41974131 and
Grant 42374135, and in part by the Fundamental Research Funds for the
Central Universities under Grant xzy012023073. (Corresponding author:
Wenchao Chen.)

Xiaokai Wang, Chunmeng Cui, Pu Liu, Zhensheng Shi, and Wenchao Chen
are with the School of Information and Communication Engineering,
Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China (e-mail:
xkwang@xjtu.edu.cn; winds0915@stu.xjtu.edu.cn; 978738268@qq.com;
shizhensheng@xjtu.edu.cn; wencchen@xjtu.edu.cn).

Dawei Liu is with Xi’an Jiaotong University, Xi’an 710049, China, and also
with the Department of Physics, University of Alberta, Edmonton, AB T6G
2E1, Canada (e-mail: liudawei2015@stu.xjtu.edu.cn).

Digital Object Identifier 10.1109/TGRS.2024.3420700

In seismic exploration, the component that can reflect the
underground geological structure and rock physical charac-
teristics is commonly referred to as the effective signal.
Conversely, the component that obstructs seismic exploration
and covers the effective signal energy is treated as the
noise [1]. There are a lot of seismic noises in seismic data,
which can be divided into noncoherent noise and coher-
ent noise. Noncoherent noise, most of which is known as
random noise, lacks coherency between different seismic
traces and has no obvious regularity. Typically, the distinc-
tion between random noise and effective signals is exploited
to suppress random noise in seismic data. For instance,
time–frequency transform, low-rank estimation method [2],
[3], [4], and their combinations are used to suppress random
noise and extract seismic signals with low-rank character-
istics. In contrast, coherent noise displays regularity with
a fixed range of frequency or apparent velocity, such as
ground roll, refracted wave, and multiples. These types of
noise had been thoroughly studied and suppressed with many
methods [5], [6], [7], [8], [9].

However, there are some common existing interferences,
such as industrial electrical interference and traffic vibrations,
exhibiting special spectrum characteristics. Industrial electrical
interference often annihilates effective signals, seriously affect-
ing seismic data quality. Fig. 1(a) and (b) shows the waveform
and amplitude spectrum of one seismic trace affected by strong
industrial electrical interference. This interference is mainly
centered around 50 Hz and its harmonic components (100,
150 Hz, and so on). In Fig. 1(b), the frequency distance
between two neighboring peaks is equal and each frequency
peak’s band is narrow. Therefore, this kind of spectra is called
the equidistant narrowband discrete spectra (ENBD-spectra).
High-speed train (HST) is one of the fastest and most con-
venient ways to travel in China, and its common commercial
operation speeds are 250, 300, and 350 km/h. The high-speed
railway network exceeded 45 000 km by the end of 2023.
The running HST in the extensive railway network would
induce seismic waves and affect the geophone near high-speed
railway. Fig. 1(c) and (d) shows the waveform and amplitude
spectrum of one seismic trace affected by running HST. The
amplitude spectrum of the seismic signal generated by this
source also exhibits distinct ENBD-spectra characteristic with
3.3-Hz peak interval [10]. Industrial electrical interference
and HST-induced signal in Fig. 1 show strong amplitude and
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Fig. 1. Typical real seismic data with ENBD-spectra component. (a) Wave-
form and (b) amplitude spectrum of the seismic data with strong industrial
electrical interference. (c) Waveform and (d) amplitude spectrum of the
seismic data with strong HST-induced signal.

dominate the amplitude spectrum. ENBD-spectra feature can
serve as a crucial foundation for signal separation, which can
be reflected in many seismic signals. Therefore, it is valuable
to find ways to separate the seismic data with ENBD-spectra
component, providing a robust data basis for seismic data
interpretation.

To separate the seismic data with ENBD-spectra component,
conventional methods usually treat the ENBD-spectra com-
ponent as the summation of some narrowband components.
Therefore, the signal can be separated according to the distri-
bution difference in the signal in some special domains, such
as the time domain [11], [12] and the frequency domain [13].
Among them, the cosine function approximation method [14]
in the time domain estimates the narrowband component
by function approximation. These methods adaptively adjust
parameters, such as amplitude, frequency, and phase based on
data, to generate the narrowband component and then subtract
it from the dataset. Nevertheless, these methods are difficult to
extract weak narrowband components because their features
are hard to discern. The notch filtering method [15] is a
simple approach to suppress the narrowband component in
the frequency domain. However, these methods need spectral
peak position priors to design multinotches’ filter. Therefore,
they degrade other components within the notch bands and
may distort other components. Moreover, we can obtain better
processing results by comprehensively using time–frequency-
domain features through short-time Fourier transform [16],
S-transform [17], [18], synchrosqueezing transform, and other
methods.

Morphological component analysis (MCA) [19], [20], [21]
is one classical signal separation method based on sparse rep-
resentation. It assumes that a signal can be modeled as a
linear combination of several components with different
morphologies. Each component has a sparse representation

Fig. 2. Schematic of signal sparse representation.

dictionary which is not sparse in representing other com-
ponents. This method exploits the diverse morphologies of
components to separate different components. The conven-
tional mathematical transforms, such as Fourier transform,
wavelet transform, curvelet transform [21], [22], and shearlet
transform [23], [24], can be selected as sparse representations
according the focused component’s morphology. However, the
commonly used Fourier transform and wavelet transform only
consider the ENBD-spectra component as several narrowband
components and do not fully use the equal frequency distance
between neighboring frequency peaks [25], [26].

Therefore, we fully consider the ENBD-spectra characteris-
tic and use the equal frequency distance between frequency
peaks as one constraint for MCA. We propose a method
for seismic data separation based on ENBD-spectra feature
within the framework of MCA. The sections of this study are
organized as follows. Section II outlines the theory of MCA
and presents the proposed method. Section III illustrates the
effectiveness and superiority of the proposed method through
synthetic and real seismic data. We choose two different
real seismic datasets to further show the proposed method’s
effectiveness. One seismic dataset is acquired from a coal mine
area with industrial electrical interference, while another one
is the seismic dataset containing the moving HST-induced
seismic component. Finally, Section IV presents the
conclusion.

II. METHOD

A. Morphological Component Analysis

Mallat and Zhang [27] proposed the sparse representation
theory in 1993. The sparse representation’s schematic is shown
in Fig. 2. A signal s ∈ RN can be represented by a linear
combination of dictionary elements marked in black. And the
coefficient in matrix X participating in the sparse represen-
tation is also marked in black, indicating that the atom is
nonzero. When the number of nonzero coefficients is small
enough, a sparse representation of the signal can be obtained.
Besides, the optimization problem to find sparse representation
of signals can be expressed as

min
8,X

∥s −8X∥
2
2 + λ∥X∥0 (1)

where X is the representation coefficient under the dic-
tionary 8. And λ is a parameter to balance sparsity and
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constraint conditions. When the error is small enough and the
representation coefficient has few nonzeros values, the signal
can be represented sparsely.

The sparse representation dictionary generally takes some
existing classical transforms. However, the conventional single
dictionary is difficult to sparsely represent the complex signal
with several components with different morphology. With the
development of sparse representation theory, Starck et al. [28]
and Bobin et al. [29] proposed the principal theory of MCA,
which provides a novel approach for seismic data separation.
MCA makes the specific assumption that the signal to be
separated can be modeled as a linear combination of different
morphological components. And each component is associated
with a specific dictionary that is sparse in representing the
corresponding component and exhibits nonsparsity in repre-
senting other components. This deliberate design ensures that
sparse representations are designed according to the specific
morphological features of each component, contributing to the
effective decomposition and reconstruction process.

In seismic signal processing, it can be assumed that the
complex signal, denoted as s, is a combination of two distinct
components with different morphological features and random
noise, which can be represented as

s = s1 + s2 + n (2)

where s1 and s2 are two components with different mor-
phologies. And n represents random noise, which is often
disregarded in practical application.

It also assumes that each component si (i = 1, 2) has
a dictionary 8i that is sparse in representing si and not
sparse in representing other components. Furthermore, these
dictionaries should have fast implementations denoted as T1
and T2. And R1 and R2 represent fast reconstruction forms
that are the inverse transformations of dictionary. Therefore,
MCA aims to separate these different signal components by
solving the optimization problem{

Xopt
1 , Xopt

2

}
= argmin

{X1,X2}

∥X1∥1 + ∥X2∥1

s.t. s = R1 X1 + R2 X2 (3)

where X1 and X2 are the sparse representation coefficient
vectors for two components, respectively.

The block coordinate relaxation (BCR) algorithm proposed
by Bruce and Sardy [30] in 1998 aims to solve the optimization
problem in (3). The core idea of the BCR algorithm is to set a
reasonable threshold strategy and update the sparse coefficient
alternately at each iteration until the iterative termination con-
dition is reached. The basic process of the BCR algorithm [31]
is as follows.

1) Initialization: The first step is to set the maximum
iterations kmax, the initial threshold λinitial, and the termination
threshold λfinal. The choice of maximum iterations should
be considered based on factors such as problem complexity,
computational resources, and algorithm convergence proper-
ties. The initial threshold needs to make the dictionary atoms
adequately match the component in the initial stage of the
iteration. This helps ensure that the representation coefficient
of the signal shows significantly more sparsity during the

early stage of the iteration, thus leading the algorithm to
converge more efficiently. The termination threshold ensures
that the iterative operation can be stopped at a reasonable
threshold. In addition, The initial sparsity coefficients are set
to X0

1 = 0 and X0
2 = 0.

2) Iteration: As iteration number k increases, the sparse
coefficient is updated alternately as

Xk
1 = H k

λ1

(
T1

(
s − R2 Xk−1

2

))
Xk

2 = H k
λ2

(
T2

(
s − R1 Xk−1

1

))
(4)

where H k
λ1

and H k
λ2

are the threshold processing using the
threshold parameters λ1

k and λ2
k . The thresholds λ1

k and
λ2

k can be updated linearly or exponentially with the iteration
steps k [26]. The linear threshold in the kth iteration can be
expressed as

λk
= λinitial−k

(
λinitial − λfinal

kmax − 1

)
(5)

and the exponential iteration threshold can be expressed as

λk
= λinitial

((
λinitial

λfinal

) 1
kmax−1

)−k

. (6)

3) Output Results: The iteration terminates when the itera-
tion number reaches the maximum iterations or the result of
further iterations is very similar to the former. The optimal
coefficients Xopt

1 and Xopt
2 can be obtained after stopping the

iteration. And the different component can be reconstructed as
follows:

s1 = R1 Xopt
1

s2 = R2 Xopt
2 (7)

where R1 and R2 represent the inverse transformations of
dictionary. Therefore, the BCR algorithm offers a solution for
separating the two components from the complex signal using
the optimal sparse representation coefficients.

B. Equidistant-Spectral Constrained MCA

1) Peak Interval Estimation for ENBD-Spectra: In the
conventional MCA method, the ENBD-spectra component
is usually modeled as the superposition of a series of nar-
rowband components, and conventional approaches often use
this modeling to select sparse representation dictionaries [32].
Therefore, the common overcomplete dictionary construction
for the ENBD-spectra component does not fully consider the
equal interval between two neighboring peaks. The frequency
spacing between adjacent spectral peaks is a crucial character-
istic of this component. A more suitable sparse dictionary for
ENBD-spectra component should make full use of the equal
interval between two neighboring peaks. Therefore, one impor-
tant step is to precisely estimate of the peak interval between
two neighboring peaks. Fig. 1(b) and (d) shows that a periodic
feature spectrum in the frequency domain dominates the
amplitude spectrum, and therefore, the cross-correlation can be
used to estimate the spectral interval between two neighboring
peaks. Here, a series of equidistant spectra with variable
intervals are generated. The cross-correlations between the
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Fig. 3. Relationship between cross-correlation value and frequency interval.
(a) Seismic data with industrial electrical interference. (b) Seismic data with
HST-induced seismic signal.

real ENBD-spectrum and these preset equidistant spectra are
calculated, and thus, the curve of cross-correlation value and
interval can be obtained. Finally, the interval corresponding
to the maximum cross-correlation value is considered as an
estimation of the peak interval between two neighboring peaks.
The results of peak interval estimation shown in Fig. 3 are
obtained by processing the seismic data in Fig. 1(b) and (d).
Fig. 3(a) illustrates the spectral peak estimation results for the
seismic data with industrial electrical interference, where the
interval is estimated to be 50 Hz which is equal to the standard
frequency of China power grid. Meanwhile, Fig. 3(b) presents
spectral peak estimation results for the seismic data with
HST-induced seismic signal. The spectral interval is estimated
to be 3.33 Hz which is equal to the ratio between trace speed
(83.33 m/s) and carriage length (25 m).

2) Sparse Dictionary Selection: If the seismic data s con-
tain industrial electrical interference or HST-induced seismic
signal, it can be modeled as a linear summation of seismic
signal s1 and ENBD-spectra component s2. According to the
basic assumption, one key step is to find sparse dictionary
for seismic signal and ENBD-spectra component. The seismic
signal s1 can be expressed as the convolution of the reflection
coefficients and the source wavelet. Therefore, the continuous
wavelet transform is usually chosen as the sparse dictionary
for component s1 [33], [34], which can be defined as

WTx(a, τ ) =
1

√
a

∫
+∞

−∞

x(t)ψ∗

(
t − τ

a

)
dt (8)

x(t) =
1

C9

∫
∞

0
a−

5
2 da

∫
∞

−∞

WTx(a, τ )ψ
(

t − τ

a

)
dτ

(9)

where WTx(a, τ ) is the wavelet transform coefficient of the
signal x(t). And ψ(t) is the wavelet function with the scale
factor a and the time shift factor τ , whose Fourier transform
form is 9(w). Besides, C9 =

∫
∞

0 (|9(aw)|2/a)da < ∞ is
the admissibility condition of wavelet function.

For the ENBD-spectra component, such as industrial elec-
trical interference and HST-induced signal in Fig. 1, each
frequency peak in the frequency domain is very similar
to amplitude spectrum of single-frequency signal, which is
very similar to the basic atom of Fourier transform. Thus,
conventional methods [35] usually choose the discrete Fourier
transform (DFT) or discrete cosine transform (DCT) as
the sparse dictionary for the single-frequency component or

Fig. 4. Process of constructing DFT with interval constraints.

narrowband component. Among them, the DFT of signal x[n]

is defined as

DFTx[m] =

N−1∑
n=0

x[n]W nm
N , m = 0, 1, . . . , N − 1 (10)

Meanwhile, the inverse DFT that is used for signal reconstruc-
tion can be defined as

x[n] =
1
N

N−1∑
m=0

DFTx[m]W −nm
N , n = 0, 1, . . . , N − 1 (11)

where DFTx[m] is the DFT coefficient of signal x[n]. And
the exponential term W nm

N = e− j (2π/N )nm serves as the basis
function of DFT in this formula. Different values of k facilitate
the extraction of signal components at distinct frequencies.

3) Equidistant-Spectral Constraint and Threshold Adjust-
ment: However, DFT only regards ENBD-spectra component
as the summation of some narrowband components, but
ignores the obvious feature that the interval between two
neighboring frequency peaks is equal. Therefore, it does
not fully use the unique ENBD-spectra component’s feature.
To make DFT adapt to ENBD-spectra component, we reshape
the N -points DFT coefficient vector into a matrix (DFTQ) with
Q rows and L I columns (as shown in Fig. 4). L I is the peak
interval and Q can be calculated by the roundup of N/L I .
This matrix can be averaged along column direction to form
an L I -points vector DFTV .

The sparse coefficients of ENBD-spectra component are
more concentrated in the corresponding positions of the basic
frequency and its multiple frequency (as shown the red and
orange regions in Fig. 4). Consequently, we can reduce the
iterative threshold λk

2 for screening these DFT coefficients,
which can enhance the ability to extract the ENBD-spectra
component. To achieve this, we set a corresponding threshold
strategy for each DFT coefficient as follows:

λ̃k
2[m] =

{
λk

2/M, DFTV [i] ≥ λk
2 and m = i + q ∗ L I

λk
2 ∗ M, else

(12)

where λ̃k
2 is the adjusted iteration threshold and M is the

adjustment coefficient that determines the extent to reduce
or amplify the threshold. DFTV is the reshaped L I -points
coefficient vector. Besides, i represents the position of sparse
coefficients. And q is the index used to indicate the frequency
of harmonic multiples, which ranges from 0 to Q−1. Besides,
M is an important parameter that affects the quality and
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Fig. 5. Process of separating seismic signal based on the equidistant-spectral
constrained morphological component.

accuracy of the final result. In real situation, a suboptimal
value can be obtained by selecting parameter M based on
a similar synthetic signal. Among them, we set the value
range of this parameter according to the sampling length
and spectral interval of the data. In this range, the signal-
to-noise ratio (SNR) is used as the standard to select the
most suitable M . This approach reduces the threshold for
separating seismic signals with the ENBD-spectra component,
corresponding to the red and orange regions in Fig. 4. And it
also increases the threshold for separating other components
which corresponds to the blue regions in Fig. 4. It can
improve the ability of signal discrimination and separation
accuracy. So the process of separating seismic data based on
the equidistant-spectral constrained morphological component
can be shown as Fig. 5.

III. DATA EXAMPLES

Among the numerous seismic data containing ENBD-
spectra component, we chosen two kinds of seismic dataset,
one contains industrial electrical interference and another
contains HST-induced seismic signal to validate the proposed
method’s effectiveness.

A. Industrial Electrical Interference Suppression Examples

1) Synthetic Data Example: The synthetic data in Fig. 6
are composed of effective seismic signal, industrial electri-
cal interference, and random noise. The effective seismic

Fig. 6. Synthetic seismic data of single trace. (a) Waveform and (b) amplitude
spectrum.

signal is generated by two Morlet wavelets with dominant
frequencies of 61 and 73 Hz. The simulated industrial elec-
trical interference is generated by superposition of multiple
single-frequency signals whose frequencies are 50 Hz and
its multiple frequency. The simulated industrial electrical
interference in Fig. 6 shows typical ENBD-spectra feature in
the frequency domain. The seismic signal and interference’s
frequency band overlap with each other, which makes it
difficult to separate different components.

Here, we use notch filtering [36] and conventional MCA
method [26] as the compared method. The separation results
by the notch filtering method, the conventional MCA method,
and our proposed method are shown in Figs. 7 and 8. It is
obvious that all the three methods can effectively suppress
industrial electrical interference in seismic data. Furthermore,
as shown in Fig. 7(c)–(f), two MCA methods can suppress
random noise at the same time. However, the results in
Fig. 7(d) show that conventional MCA can suppress indus-
trial electrical interference while may damage some effective
signals, as pointed with red arrow. Our proposed method
significantly reduces this damage to effective signals, which
is shown in Fig. 7(f).

For the extracted signals in Fig. 8, it is evident that the
notch filtering method residues a lot of random noise and
causes significant damage to the effective signal within the
notch band, particularly at the position indicated by three
dotted rectangles in Fig. 8(b). As shown in Fig. 8(c)–(f),
both the conventional MCA method and our method can
remove random noise and recover two wavelets. However,
the conventional MCA method still exhibits some damages
to two wavelets in Fig. 8(c) and (d), while our method can
reduce such damage by introducing ENBD-spectra feature as
one constraint [Fig. 8(e) and (f)].

The comparison of SNR in Table I further shows the per-
formance of three methods. Two MCA methods have obvious
higher SNR than notch filtering, while the proposed method
can have 3-dB improvement over the conventional MCA
method. These comparisons in waveform, amplitude, and SNR
show the proposed method’s effectiveness in separating the
seismic data with industrial electrical interference.

2) Real Seismic Data: To further evaluate the proposed
method, we use one 2-D real seismic dataset acquired from
a coal mining area in China and show this dataset in Fig. 9.
The effective seismic signal is covered by strong industrial
electrical interference. The average amplitude spectrum in
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Fig. 7. Suppressed interference of single trace. (a) Waveform and (b) ampli-
tude spectrum of notch filtering method. (c) Waveform and (d) amplitude
spectrum of the conventional MCA method. (e) Waveform and (f) amplitude
spectrum of our proposed method.

Fig. 9(b) along with the amplitude spectrum of the 23rd
seismic trace shown in Fig. 9(c) exhibit typical ENBD-spectra
feature, and the effective seismic signal’s amplitude spectrum
is significantly weaker than that of the interference. Therefore,
recovering the weak seismic signal is one challenging work.

Notch filtering, the conventional MCA method, and the
proposed method are used to separate this dataset and further
suppress strong industrial electrical interference. The separa-
tion results of three methods are shown in Fig. 10. Three
methods can suppress the major industrial electrical inter-
ference and recover the effective seismic signals. However,
notch filtering remains a considerable amount of interference,
as shown from Fig. 10(a). The conventional MCA method can
gain better separation performance. As shown in Fig. 10(b), the
conventional MCA method can recover the effective seismic
signal clearly, but has some visible interference leakages near
the up bound. The proposed method can provide a good
recovery result for effective seismic signal and does not have
interference leakage near the bound [Fig. 10(c)]. In addition,
the 53rd trace not only contains industrial electrical inter-
ference signals (50 Hz and its frequency doubled harmonic
components) but also contains a component concentrated

Fig. 8. Extracted effective signal of single trace. (a) Waveform and (b) ampli-
tude spectrum of notch filtering method. (c) Waveform and (d) amplitude
spectrum of the conventional MCA method. (e) Waveform and (f) amplitude
spectrum of our proposed method.

TABLE I
COMPARISON OF SNR OF INDUSTRIAL ELECTRICAL INTERFERENCE

at 84.5 Hz. The conventional MCA method extracted all the
narrowband components and does not discriminate industrial
electrical interference and other components. The proposed
method can improve the signal separation accuracy through
the interval constraint, which also leads to some difference in
Fig. 10(b) and (c).

We calculate the separation results’ average amplitude spec-
tra and shown them in Fig. 11. The notch filtering method
can effectively remove the interference within the filter band,
but it causes serious damage within the effective signal’s
frequency band [Fig. 11(b)]. Moreover, the conventional MCA
method can overcome the shortcomings of notch filtering
and gain better separation performance at the frequency band
near 50 Hz and its multiples [Fig. 11(d)]. However, the
periodic small peaks, which are pointed by some red arrows
in Fig. 11(d), indicate that the conventional method has a
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Fig. 9. Real seismic data with industrial electrical interference. (a) Seismic
profiles. (b) Average amplitude spectrum. (c) Amplitude spectrum of seismic
data of 23rd trace.

Fig. 10. Results of seismic profiles. (a) Notch filtering method. (b) Conven-
tional MCA method. (c) Our proposed method.

little interference leakage to signal part. Compared with notch
filtering and conventional MCA methods, the proposed method
can achieve more thorough suppression of interference and
keep the fidelity of the effective signal [Fig. 11(f)]. Taking the
23rd seismic data [Fig. 10(c)] as an example, the effective
signal waveform and amplitude spectrum results shown in
Fig. 12 can also be used to verify the performance of the
proposed method.

B. HST-Induced Seismic Signal Extraction Examples

1) Synthetic Data Example: HST-induced seismic signal
is mainly generated by the contact between the wheels and

Fig. 11. Comparison of average amplitude spectrum. (a) Interference and
(b) effective signals of notch filtering method. (c) Interference and (d) effective
signals of the conventional MCA method. (e) Interference and (f) effective
signals of our proposed method.

the track during the operation of high-speed railway trains
(HSTs) [37]. Fig. 13 shows one typical structure for China’s
HST. It has M carriages and each carriage has four pairs of
wheels. The length of each carriage l is generally 25 m. The
interval between the first and the second pair of wheels d1
is 2.5 m, while the interval between the first and third pairs
of wheels d2 is 14.5 m [38], [39]. When an HST travels at a
constant speed, the carriages of the HST would periodically
press the track through wheels. Therefore, the HST-induced
seismic signal also exhibits periodic features, and thus it has
ENBD-spectra feature in the frequency domain [40], [41].
HST-induced seismic signal has been used in train speed
estimation, underground structure inversion, etc. [42], [43].
In this example, we take HST-induced seismic signal as the
effective component to be separated.

The peak interval of the HST-induced signal’s ENBD-
spectra is equal and determined by the ratio between HST
speed and carriage length [32]. If the HST speed is set to
100 m/s, the periodicity caused by the same carriage structure
is 0.25 s, and thus the peak interval of ENBD-spectrum
is 4 Hz.

To show the proposed method in extracting the HST-induced
signal, a 1-D synthetic dataset is generated with one effective
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Fig. 12. Extracted effective signal of the 23rd trace. (a) Waveform and
(b) amplitude spectrum of the notch filtering method. (c) Waveform and
(d) amplitude spectrum of the conventional MCA method. (e) Waveform
and (f) amplitude spectrum of our proposed method.

Fig. 13. Schematic of a uniformly moving HST source.

HST-induced signal with 4-Hz peak interval, some Ricker
wavelets (their dominate frequencies are 7, 15, 30, and 40 Hz),
and random noise. Fig. 14 shows this synthetic dataset and its
amplitude spectrum.

The conventional MCA method and the proposed method
are applied to this synthetic dataset and further extract the
HST-induced signal. The HST-induced signals extracted by
the conventional MCA method and the proposed method are
shown in Fig. 15. Comparing the results in the time domain,
the signal extracted by the proposed method [Fig. 15(c)] can
recover better periodicity and gain better anti-noise perfor-
mance than the conventional method [Fig. 15(a)], where the
residuals of Ricker can be observed at the red ellipse in
Fig. 15(a). For the frequency domain comparison, the extracted

Fig. 14. Synthetic seismic data of single trace. (a) Waveform and (b) ampli-
tude spectrum.

Fig. 15. Extracted effective signal of single trace. (a) Waveform and
(b) amplitude spectrum of the conventional MCA method. (c) Waveform and
(d) amplitude spectrum of our proposed method.

HST-induced signal by the proposed method [Fig. 15(d)] has
a more obvious ENBD-spectra feature than the conventional
MCA’s result [Fig. 15(b)] which still contains some unwanted
energy in the red dotted rectangle area. Fig. 16 shows the noise
separated by the conventional MCA method and the proposed
method, which contains the random noise and some Ricker
wavelets. Generally, two waveforms provided by the two
methods [Fig. 16(a) and (c)] are similar. However, the con-
ventional method provides an amplitude spectrum where some
low-frequency components are missing [Fig. 16(b)], while
the proposed method yields a continuous amplitude spectrum
[Fig. 16(d)], which also confirmed that the low-frequency
Ricker wavelets are separated and classified to the right part.

To quantitatively evaluate the conventional MCA method
and the proposed method, SNR is used. Here, SNR is defined
as the ratio between HST-induced signal and other parts.
The SNR of the synthetic dataset is 11.446 dB. The SNR
comparison is shown in Table II, the proposed method can
gain better SNR performance than the conventional MCA
method. Through the comparison of these results, it is evident
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Fig. 16. Separated interference of single trace. (a) Waveform and
(b) amplitude spectrum of the conventional MCA method. (c) Waveform and
(d) amplitude spectrum of our proposed method.

TABLE II
COMPARISON OF SNR OF THE HST-INDUCED SEISMIC SIGNALS

Fig. 17. Schematic of seismic data acquisition for a high-speed railway in
southern China.

that the proposed method can provide better data separation
performance.

2) Real Data Example: To further test the performance,
the seismic data collected by one seismic geophone near the
high-speed railway in southern China are used (the position
of seismic receiver is shown in Fig. 17).

Fig. 1(c) shows the received seismic data by receiver when
one HST passed the geophone. Fig. 1(d) proves this dataset is
dominated by the ENBD-spectra component which is caused
by the moving HST. Fig. 18 shows the extracted HST-induced
seismic signals’ waveforms and amplitude spectra. Compared
with the conventional MCA method [Fig. 18(a)], the proposed
method recovers a more obvious periodic feature in the time
domain [as the red arrows pointed in Fig. 18(c)], which

Fig. 18. Extracted effective signal of single trace. (a) Waveform and
(b) amplitude spectrum of the conventional MCA method. (c) Waveform and
(d) amplitude spectrum of our proposed method.

Fig. 19. Separated interference of single trace. (a) Waveform and
(b) amplitude spectrum of the conventional MCA method. (c) Waveform and
(d) amplitude spectrum of our proposed method.

conforms to the fact that all the carriages of one HST have
a similar structure. Moreover, the conventional MCA method
has noise residual [Fig. 18(b)], while the proposed method
recovers can recover the clear ENBD-spectra feature in the
frequency domain [Fig. 18(d)].

Fig. 19 shows the noise part separated by the conventional
MCA method and the proposed method. Compared with the
conventional MCA method’s noise part in Fig. 19(a) and (b),
the noise part separated by the proposed method has a
stronger energy. We also compare the separation results of
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Fig. 20. Results of time–frequency spectrum. (a) Original signal. (b) Effective
signals of the conventional MCA method. (c) Effective signals of our proposed
method.

Fig. 21. Autocorrelation coefficients of HST source seismic signals.
(a) Unprocessed real data. (b) Conventional MCA method. (c) Our proposed
method.

HST-induced seismic signals in the time–frequency domain
and show the time–frequency spectra in Fig. 20. Fig. 20(c)
proves the proposed method can extract the ENBD-spectra

feature component better than the conventional MCA method
[Fig. 20(b)].

As Fig. 13 shows, when the HST with a periodic structure
maintains a constant velocity, the HST-induced signal should
have a periodic feature. To further evaluate the extracted
HST-induced seismic signals, we compute their autocorrela-
tion functions and show them in Fig. 21. When the time
lag is −0.3 and 0.3 s, these autocorrelation functions reach
the second largest maximum. Specifically, the second largest
maximum for the autocorrelation function of received data
is 0.68. After separation, the second largest maxima for
the autocorrelation function of the extracted HST signal by
the conventional method and the proposed method are 0.83
and 0.95, respectively. The autocorrelation function evaluation
verifies that the HST-induced signal extracted by the proposed
method has a higher periodicity than that of the conventional
method, which shows the proposed method can provide a more
complete separation result than the conventional MCA method
for the complex data with the ENBD-spectra component.

IV. CONCLUSION

This study proposes an improved MCA method to separate
seismic data with the ENBD-spectra component. The seismic
data are modeled as a linear superposition of two components:
one exhibiting ENBD-spectra feature and the other lacking
this characteristic. Based on the morphological differences
in these components, the DFT and the CWT are selected
as the dictionary of the ENBD-spectra component and other
components. Besides, the ENBD-spectra feature is used as
constraints to introduce MCA, which can effectively and accu-
rately separate the seismic data with ENBD-spectra feature
and other components. Both the synthetic seismic examples
and the real seismic examples show that our proposed method
can effectively reduce the damage and distortion of the target
signal caused by the conventional methods. Moreover, this
method can be extended to the separation of other signals with
ENBD-spectra component.
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