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ABSTRACT

Due to challenging field operations and resource constraints,
seismic data acquisition often requires coping with missing traces.
Interpolation algorithms are crucial for reconstructing these miss-
ing traces to enable improved subsurface analysis and interpreta-
tion. Although deep learning has made exciting advances in
seismic reconstruction, its focus has predominantly been on
2D and 3D data sets with relatively low rates of missing data.
Reconstruction of 5D seismic data entails considering simultane-
ous sources and receivers deployed in areal arrays to solve the
reconstruction problem. The latter offers greater data redundancy,
which can be leveraged to enhance interpolation quality. Tradi-
tional 5D deep-learning interpolation methods rely heavily

on synthetic training pairs, posing challenges when applied to
real-world data. This necessitates transfer learning techniques,
which can be cumbersome. To address this, we introduce a
self-supervised, coordinate-based deep interpolation algorithm
that mitigates the need for labeled data. Using a multilayer per-
ceptron (MLP) network can effectively encode the continuous
seismic 5D wavefield. Once trained, the MLP can infer missing
trace amplitudes from their coordinates.We contribute to boosting
the MLP, enabling it to generate seismic profiles rather than sin-
gle-point predictions. This enhancement significantly strengthens
the model’s performance and efficiency. Moreover, we apply
nuclear norm regularization to the output profiles, improving
the reconstruction quality. The effectiveness of our algorithm is
illustrated with synthetic and field data experiments.

INTRODUCTION

In exploration seismology, seismic data with complete sampling
are essential for subsequent tasks, such as amplitude-variation-with-
offset analysis (Downton et al., 2010), simultaneous source separa-
tion (Zhou et al., 2016), and fault detection (Wu et al., 2019a,
2019b). However, limitations imposed by physical or economic fac-
tors often result in missing traces in the observed data. Therefore, it
is imperative to appropriately restore data and reconstruct a com-
plete and continuous wavefield (Chen et al., 2016). Otherwise, these
missing traces, carrying valuable geologic information, will ad-
versely affect subsequent data processing and interpretation. There-
fore, seismic data reconstruction has attracted considerable attention
from academia and industry in the past several decades.
Traditional methods consider seismic interpolation problems to

be typical underdetermined inverse problems that do not have a
unique solution. It is necessary to impose constraints in the inter-
polation process to obtain the most realistic reconstruction result.

The first category is methods based on predictive filters. Consid-
ering the predictability of linear events in seismic data, the f-x
domain prediction error filter method (Spitz, 1991; Porsani, 1999;
Naghizadeh and Sacchi, 2009) is proposed, and this method is sub-
sequently extended to the t-x (Crawley et al., 1999) and f-k domains
(Gulunay and Chambers, 1996). With the prediction error filter-
based approach, the missing traces can be interpolated by filters
derived from nonaliased low-frequency data (Liu et al., 2022).
Although quite effective, these methods require the manual adjust-
ment of parameters such as the length of the filter and window size
to meet the linear-events assumption.
The second category comprises rank-reduction-based approaches,

which assume that the complete data are inherently low rank. Mean-
while, the presence of missing traces increases the rank of the required
matrix or tensor. In this regard, seismic data interpolation can be
viewed as a low-rank matrix or tensor completion problem. Ma-
trix-based approaches entail organizing spatial data at a given temporal
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frequency into block Hankel/Toeplitz matrices or texture matrices and
then applying a rank reduction algorithm such as truncated singular
value decomposition (SVD) to fill empty traces (Trickett et al., 2010;
Oropeza and Sacchi, 2011; Gao et al., 2013; Chen et al., 2016). In
parallel, numerous studies have already leveraged the low-rank prop-
erties of tensors for seismic data recovery, such as the high-order SVD
(Kreimer and Sacchi, 2012), Tucker decomposition (Da Silva and
Herrmann, 2015), and tensor SVD (Ely et al., 2015). By leveraging
tensor unfoldings and matrix factorization technologies, Gao et al.
(2015) adopt the parallel matrix factorization (PMF) algorithm (Xu
et al., 2015) to reconstruct a low-rank tensor structure from under-
sampled seismic data. This technique performs matrix factorizations
to the different tensor unfoldings, thus dramatically decreasing the
computational complexity by avoiding the use of SVD. Following
this, Liu et al. (2022) incorporate tensor ring (TR) rank unfolding
and further develop PMF-TR. Tensor-based approaches preserve
the seismic waveforms better because all physical dimensions of
the seismic data are considered, demonstrating the inherent potential
of tensor algebra for developing new reconstruction techniques.
As a third category, transform-based methods play a pivotal role in

addressing the issue of recovering missing traces. The Fourier trans-
form with simple constraints, such as band-limited wavenumber-do-
main regularization and the sparsity-promoting regularization of
spectral amplitudes, is widely used by the industry (Liu et al., 2022).
The sparsity-promoting methods assume that complete seismic data
exhibit sparsity in a specific transformation domain, such as the Ra-
don (Bardan, 1987; Kabir and Verschuur, 1995; Chen et al., 2021b),
shearlet (Liu et al., 2019b), seislet (Fomel and Liu, 2010; Gan et al.,
2015), or curvelet (Hennenfent et al., 2010; Shahidi et al., 2013;
Wang et al., 2015) domains. Then, the presence of missing traces
disrupts this sparsity. Therefore, it becomes possible to recover miss-
ing traces by enhancing the sparsity of the data in the transform do-
main. However, these methods require predetermined transforms and
the fixed transforms may not adapt well to complex data. To refine it,
researchers introduce dictionary learning methods that adaptively de-
rive a group of atoms to better fit the data and preserve their subtle
features, involving K-SVD (Zhu et al., 2015; Wang et al., 2021) and
data-driven tight frame methods (Yu et al., 2015). Nevertheless, these
methods tend to be computationally intensive and sensitive to param-
eter selection, rendering them unaffordable when dealing with high-
dimensional problems.
Nowadays, deep-learning techniques demonstrate their remark-

able potential across various domains, and seismic data interpola-
tion is no exception. Unlike traditional methods, supervised deep-
learning algorithms can acquire prior knowledge by learning from a
training data set (Liu et al., 2019a; Yu et al., 2019). In addition,
owing to the utilization of nonlinear activation functions, neural net-
works can effectively capture nonlinear features within the data,
yielding enhanced information extraction and representation capa-
bilities. Currently, various types of neural networks have been used
in seismic data interpolation, including autoencoders (Mandelli
et al., 2018; Wang et al., 2020), generative adversarial networks
(GAN) (Oliveira et al., 2018; Siahkoohi et al., 2018), and model-
driven networks (Zhang et al., 2020a; Xu et al., 2022). Although
neural networks demonstrate promising results in seismic data in-
terpolation, they mainly concentrate on low-dimensional data, such
as 2D or 3D seismic data. Moreover, many of these methods rely on
synthetic data for supervised training, thereby constraining the
model’s performance to the quality of the training data.

Various unsupervised seismic interpolation methods have
emerged to address the challenges of insufficient training labels
in recent years. Fang et al. (2023a) introduce a novel self-supervised
learning interpolation network (SSLI) inspired by Noise2Void
(Krull et al., 2019). SSLI samples a small portion of the trace from
the missing data as a label and uses the remaining part of the miss-
ing data to predict the sampled segment. Subsequently, a vast num-
ber of samples from the missing data are randomly selected to train
the Unet-like network. Upon completion of the training process, the
original missing data are used to predict the corresponding complete
data, yielding promising results in 2D and 3D data. Kong et al.
(2020) propose an unsupervised 3D seismic data interpolation net-
work called deep-prior-based seismic data interpolation (DPSI).
This approach involves feeding random noise into a multiscale Unet
network to fit the observation data at the observed locations. In ad-
dition, the authors introduce an adaptive weighted Laplacian regu-
larization term to constrain the network’s output, thereby achieving
unsupervised 3D seismic data interpolation.
In contrast to 2D/3D data, 5D seismic data can represent the di-

rectionality of geologic features and the changes in seismic re-
sponses with different offsets and azimuths, leading to a better
understanding of the subsurface properties. However, characterizing
complex geologic settings in 5D data with deep learning faces
unique challenges. First, the computational resources required
for 5D convolution are more significant than for three dimensions.
Then, common deep-learning frameworks such as TensorFlow and
PyTorch do not have 5D convolution operators, preventing their use
for 5D data processing. To mitigate this, Fang et al. (2023b) use the
characteristics of 3D convolution operations to construct a 5D con-
volutional neural network. Subsequently, synthetic 5D seismic data
are used as labels to train this network, enabling it to perform data
interpolation. However, further enhancements to computational ef-
ficiency are necessary for this method to gain widespread usage. In
summary, developing an efficient, label-free, and robust 5D
reconstruction method is essential for real-world scenarios and re-
mains an area of ongoing exploration.
Computer vision has witnessed significant advancements with

the introduction of neural implicit representations, which use neural
networks to learn continuous functions mapping spatial coordinates
to physical attributes. Originally applied to computer vision
tasks such as scene representation (Martin-Brualla et al., 2021;
Mildenhall et al., 2021), image processing (Xu, 2020; Chen
et al., 2021d), and 3D object representation (Mohamed and
Lakshminarayanan, 2016; Park et al., 2019), neural radiance fields
(NeRF) are particularly influential. These models comprise a Fou-
rier feature mapping (FFM) module and a multilayer perceptron
(MLP) network, enabling us to encode the wavefield point-wise.
Specifically, the FFM module proficiently converts spatial coordi-
nates into Fourier domain encodings, and the MLP correspondingly
maps these Fourier encodings to their respective values. This way,
the complete and continuous wavefield information becomes en-
coded within the MLP’s weight parameters by training the model
using observed data points. Consequently, the missing data can be
reconstructed by querying the values corresponding to the respec-
tive coordinates. The neural representations for videos (NeRV)
framework (Chen et al., 2021a) further enhances the efficiency
of NeRF-based methods by transitioning from point-wise to im-
age-wise processing, significantly accelerating encoding and decod-
ing speeds while maintaining high-quality outputs.
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Although these neural implicit representations have demon-
strated effectiveness in computed tomography (CT) reconstruction
(Sun et al., 2021) and seismic interpolation (Goyes-Peñafiel et al.,
2023; Li et al., 2024; Liu et al., 2024), their accelerated adaptation
to 5D seismic data remains underexplored. This paper extends
NeRV (Chen et al., 2021a) to achieve an efficient reconstruction
of the missing traces within 5D seismic data. Specifically, we pro-
pose neural implicit representations for seismic interpolation
(NeRSI) — specially engineered for reconstructing 5D seismic
data. Our approach is characterized by a novel, coordinate-based,
profile-wise framework that captures the complex structural char-
acteristics of 5D seismic signals. A convolutional neural network
component is at the heart of this framework, functioning as a
decoder to reconstruct complete seismic profiles. This method de-
parts from traditional point-based techniques (Li et al., 2024; Liu
et al., 2024), significantly enhancing training and testing efficiency.
In addition, we add a nuclear norm regularization item to improve
the model’s resistance to noise, thus effectively exploiting the in-
trinsic properties of 5D seismic signals. Synthetic and field data
examples illustrate the efficacy of NeRSI. The core contributions
of this research are as follows.

1) An efficient 5D seismic data reconstruction approach with a
self-supervised coordinate-based internal learning method is
developed, eliminating the need for additional labeled data.
To our knowledge, this is the first attempt accelerating an ap-
proach in 5D seismic data processing.

2) Building upon the original point-wise approach in NeRF, we
propose an advanced profile-wise technique that fully ex-
ploits the unique properties of seismic data. This enhance-
ment results in a substantial 40-fold increase in data
processing efficiency, enabling a faster and more accurate
reconstruction of 5D seismic data.

3) To further improve the robustness of our model, a nuclear
norm regularization is added to our objective function, sig-
nificantly enhancing its robustness to noise.

METHOD

Neural network implicit representation for 5D
interpolation

In seismic data interpolation algorithms, the predominant empha-
sis has historically been placed on manipulating 2D and 3D data
sets. However, the intricate nature of 5D seismic data, which incor-
porate offset and azimuths, provides a more complete representation
of seismic data. This enrichment of the data structure enhances the
fidelity of seismic interpretation and introduces a beneficial level of
redundancy conducive to more sophisticated interpolation tech-
niques. Despite these advantages, interpolating 5D data remains
a formidable challenge due to the prestack nature of these datasets
and the substantial computational costs from their large volume.
This study aims to directly address these obstacles to fully harness
the rich information embedded within 5D seismic data.
This paper emphasizes the essential process of regular 5D data

interpolation. The binned seismic data are structured into a 5D tensor
for enhanced analysis and clarity, as shown in Figure 1. For source-
receiver coordinates, entries in the observed tensor can be expressed
as Dobsðt; sx; sy; rx; ryÞ, where ðsx; sy; rx; ryÞ are the source and
receiver locations. With a different data sorting, in midpoint-offset,

the entries can also be denoted as Dobsðt; mx; my; hx; hyÞ. Here, t
represents time, mx and my represent the inline and crossline mid-
point coordinates, and hx and hy indicate the inline and crossline
offsets, respectively. Alternatively, the data can be arranged as
Dobsðt; mx;my; jhj; αÞ, where jhj represents the absolute offset,
and α signifies the azimuth. For a general representation, the preced-
ing coordinate positions are denoted by a vector v, where a 5D
coordinate is expressed as v ¼ ½v1; v2; v3; v4; v5�T.
Assuming the observed decimated data Dobs correspond to the

complete data Z, the mathematical relation between Dobs and Z
can be formulated as follows:

Dobs ¼ P ∘ Z; (1)

where ∘ represents the Hadamard (element-wise) product and P
indicates a sampling operator:

pv1v2v3v4v5 ¼
�
0 if dv1v2v3v4v5 is a missing entry

1 if dv1v2v3v4v5 is a nonobserved entry
:

(2)

Seismic data can be conceptualized as a wavefield, which is es-
sentially a function Fmapping coordinates to their respective values
in Z:

zv1v2v3v4v5 ¼ FðvÞ: (3)

As mentioned previously, NeRF is highly effective for representing
continuous wavefields. Consequently, we choose to depict the func-
tion F using anMLP, denoted asM. By fine-tuning the MLP param-
eter weights, denoted as θ, we can refine the original equation 3 to

zv1v2v3v4v5 ¼ MθðvÞ: (4)

Given that the complete data Z are not directly accessible, our ap-
proach involves inferring Mθ using only the observed data Dobs.
Hence, our objective function is defined as

J1ðθÞ ¼
X

v1;v2;v3;v4;v5

EðDobsðvÞ;MθðvÞÞ; (5)

Figure 1. Coordinate system used for describing the 5D seismic
data in 3D seismic exploration.
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where E represents a distance metric. We adopt the mean-squared
error for its simplicity and stability, resulting in the following
derived formulation:

J1ðθÞ ¼
X

v1;v2;v3;v4;v5

kDobsðvÞ −MθðvÞk22: (6)

Our strategy leverages the inherent continuity of the 5D seismic
wavefield as a constraining factor. Fortunately, MLPs exhibit a
natural resistance to high-frequency variations. Moreover, this fre-
quency resistance characteristics can be modified by changing the
encoding length of input coordinates (Zhang et al., 2020b). There-
fore, the inherent prior of MLP guarantees that the learned seismic
wavefield encounters the continuity requirements even only training
on sparsely sampledDobs. Subsequently, the complete wavefieldZ
can be successfully recovered by querying MLP at each vacant co-
ordinate.

Profile-wise interpolation approach

The technique outlined in equation 6 is referred to as the point-
wise method (Liu et al., 2024), with its network architecture shown
in Figure 2. This architecture can be characterized as a composition
of an encoder, consisting of 16 fully connected layers, and a decoder,
comprising two fully connected layers. Although the point-wise
method is effective for seismic data interpolation, its single-point out-
put strategy has a notable limitation. This approach treats each point
in the wavefield separately, leading to the substantial computational
resources required for model training, especially for large data vol-
umes. Moreover, the model tends to inadvertently learn and replicate
the noise in scenarios with low signal-to-noise ratio (S/N) field data.
This paper proposes a novel approach, termed the “profile-wise

interpolation method,” designed to output complete seismic profiles
instead of individual pixels. To differentiate it from the point-wise
process, we name this technique NeRSI. This method dramatically
enhances output efficiency compared with the conventional point-
wise approach. In addition, focusing on profile outputs allows us
to implement regularization strategies more effectively. Accordingly,
the profile-wise interpolation method surpasses the point-wise ap-
proach by effectively leveraging the intrinsic correlations within
the profiles. This advantage not only amplifies the relevant signals
but also significantly boosts the overall performance of the network
model. Specifically, to reduce noise in the output data, we integrate
nuclear norm loss into the model’s loss function. This commonly
used loss reduces dependence on self-supervised training data and
makes use of prior knowledge to place constraints on the output pro-
files, markedly improving the accuracy of the interpolation process.

Profiles characterized by well-defined structural information and
stable event continuity are particularly suitable for convolutional
network learning. This stems from the inherent nature of convolu-
tional operations, which extract features with more predictability
and regularity. Therefore, selecting an appropriate output profile di-
mension is crucial in the proposed profile-wise approach because
our seismic data have five dimensions. To achieve this, we explore
two different scenarios. For seismic data without normal moveout
(NMO) correction, we specifically select one data gather that
displays continuous events and clear structures. As an illustrative
example, we refer to the SEG C3_NA open data set (Society
of Exploration Geophysicists, 2024), which is organized in
source-receiver positions. Through careful examination, we fix
sx, sy, and rx, resulting in the output gather, denoted as
Dobsð∶; sx; sy; rx; ∶Þ. The colon notation ð∶Þ indicates that the ten-
sor is being sliced along the first and last dimensions, meaning that
all elements along these dimensions are selected while sx, sy, and rx
are held constant.
Likewise, given v ¼ ðsx; sy; rxÞT, we construct the set

fv;Dobsð∶; sx; sy; rx; ∶Þg for our training process, whose objective
function is defined as

J2ðθÞ ¼
XSx
sx¼1

XSy
sy¼1

XRx

rx¼1

kðMθðvÞ ∘ Pð∶; sx; sy; rx; ∶Þ

−Dobsð∶; sx; sy; rx; ∶Þk2F; (7)

where Sx and Sy are the numbers of sources in the inline and cross-
line direction, respectively. In addition, Rx denotes the number of
receivers in the inline direction. Additional details and results can be
found in the synthetic data example.
We adopt a different profile selection approach when addressing

the scenario involving common-midpoint (CMP) data with NMO. In
this context, the application of NMO correction notably enhances
event continuity across specific gathers, helping our network to cap-
ture their correlations effectively. An intuitive strategy is fixing mx

and my in the 5D seismic data set Z and extracting a 3D tensor
Xðt; h; αÞ. This tensor comprises traces gathered at the same
CMP, where the different seismic traces exhibit similar structural
characteristics. Consequently, such a slicing method enhances the
homogeneity of the data within X , which helps convolutional net-
works. For a more detailed comparison of the different profiles within
X , two distinct unfolding approaches are used, with the time dimen-
sion held constant. As shown in Figure 3, the tensor X ∈ RI1×I2×I3

can be unfolded into either matrix Xð1Þ ∈ RI1×I2I3 or Xð2Þ ∈ RI1×I3I2.
It is widely recognized that the amplitude variations resulting from
azimuthal anisotropy are generally less pronounced than those caused
by changes in offset. The application of these unfolding methods to
actual field data, as shown in Figure 4, also reveals that due to the
variation in offset impacting event amplitude and arrival time, the
unfolding method in Figure 4a results in more structurally coherent
profiles compared with Figure 4b. Hence, we favor the unfolding
strategy shown in Figure 3a (marked as U) to X and create a data
set fv;Xðmx;myÞ

ð1Þ g for self-supervised training, where v ¼ ðmx;myÞT is
the input of our network and X

ðmx;myÞ
ð1Þ is the corresponding learning

target. The training process calculates the loss function only at posi-
tions with available observed data to optimize the network according
to the following objective function:

Figure 2. MLP network structure for the point-wise interpolation
method.
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J3ðθÞ¼
XMx

mx¼1

XMy

my¼1

kMθðvÞ ∘UðP∶;mx;my;∶;∶Þ−X
ðmx;myÞ
ð1Þ k2F; (8)

where Mx and My are the largest lengths of the inline and crossline
axes, respectively. After completing the training process, we process
each v ¼ ðmx;myÞT to acquire its respective profile for seismic data
reconstruction.

Network architecture with feature frequency
modulation

We develop an innovative network structure to accommodate the
profile-level output. This advancement primarily involves modify-
ing the MLP framework by incorporating additional convolutional
layers. As shown in Figure 5, the network architecture can be con-
ceptually segmented into two main components. The first is a pre-
defined single FFM layer γðvÞ, implemented to improve positional
encoding capabilities. The second component begins with an MLP-
type encoder, which efficiently converts coordinates v into the cor-
responding latent variables ϕ. This process effectively encapsulates
the fundamental attributes of the seismic profile. Subsequently, a
convolutional network-based decoder reconstructs the full seismic
profile from ϕ. Using Nτ to represent the combination of encoder
and decoder, the network parameters τ are meticulously optimized
to align with the observed data, and the comprehensive representa-
tion of the NeRSI network is MθðvÞ ¼ NτðγðvÞÞ.

Input positional encoding mapping

Although neural networks are widely renowned for their ability to
approximate universal functions (Hornik et al., 1989), substantial evi-
dence suggests that standard MLP often faces challenges in capturing
high-frequency variations. Specifically, inputting the raw data posi-
tion v directly into anMLP tends to produce overly smoothed results,
leading to the loss of high-frequency details in the reconstructed data
(Tancik et al., 2020). Expanding v into its Fourier spectrum before
feeding it into the MLP becomes a common practice to mitigate this
issue. This method significantly improves the model’s ability to de-
tect and represent high-frequency signals, enhancing overall data
fidelity. Accordingly, we propose integrating a positional encoding
γ as a high-dimensional mapping defined by

γKðvÞ ¼ ½cosðω1v1Þ; sinðω1v1Þ; cosðω1v2Þ; sinðω1v2Þ; : : : ;
cosðωKvnÞ; sinðωKvnÞ�T; (9)

where K represents the total number of components, and the ith fre-
quency mapping can be either formulated by ωi ¼ iπ=β with linear
sampling or ωi ¼ πβi with exponential sampling. Here, v represents
an arbitrary coordinate vector normalized within ½0; 1�. Our experi-
ments empirically find that using exponentially varying ω results in
superior convergence for seismic signals.
To visually demonstrate the functionality of the FFM module,

we carry out an experiment using a set of 100 sample points. These
points were then subjected to coordinate normalization within the
range of ½0; 1�. Moreover, we empirically set the parameters

Figure 3. Two different unfolding strategies. (a) The profile gener-
ated from common-offset azimuthal gathers and (b) the profile gen-
erated from common-azimuth gathers.

Figure 4. Field data examples of two different unfolding strategies.
(a) The profile generated from common-offset azimuthal gathers
and (b) the profile generated from azimuthal-sectored gathers.

Figure 5. The proposed profile-wise NeRSI interpolation method.
(a) Profile-wise implicit representation takes the position index as
input and uses an MLP + convolutional neural network to output the
entire image in the specified dimensions from the compressed latent
space ϕ. (b) The architecture of the NeRSI block designed to up-
scale the feature map by a factor of S.
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K ¼ 40 and ωi ¼ π × 1.25i in equation 9. Following these prepro-
cessing steps, we use positional encoding on the normalized coor-
dinates to generate the results shown in Figure 6. Each column in
Figure 6 shows the positional encoding of a sample point. Notably,
this encoding procedure serves to convert the original low-dimen-
sional coordinates into a high-dimensional Fourier feature space.
Such a transformation is advantageous as it enhances the network’s
capacity to capture the high-frequency components inherent in the
data effectively, a phenomenon well documented in seminal studies
such as NeRF (Martin-Brualla et al., 2021).
To provide a clearer demonstration of the efficacy of FFM, we

conduct a comparative analysis with two MLP networks, one aug-
mented with the FFM module and the other without it, to model
identical 2D seismic data. These networks are identical except
for the inclusion of positional coding. After training for 80 epochs,
we present the results for both scenarios in Figure 7. The outcomes
distinctly showcase the network’s struggle to fit the data in the ab-
sence of FFM accurately. In contrast, the incorporation of FFM en-
ables us to achieve a fitting outcome that closely resembles the
original data. Although we acknowledge that with increased itera-
tions, the FFM-less network may also start to exhibit effective struc-
tures, the initial findings underscore the advantage of FFM in
facilitating rapid network feature extraction. This experiment serves
as a direct demonstration of the pivotal role played by the FFM
module in our proposed methodology.
Hence, we incorporate the FFM module into our methodology.

By adapting the frequency mapping to an exponential variation, our
method effectively captures the high-frequency variations inherent
in seismic signals, thereby enhancing overall interpolation perfor-
mance and accuracy.

NeRSI network architecture

Using a point-wise MLP decoder to generate all point values of
seismic data is inefficient, particularly for large data sets, Chen et al.
(2021a) introduce a neural network implicit representation for video
compression. This novel approach inputs a normalized timestamp
“t” to produce the corresponding image at that instant. Through
training, the network encapsulates the entirety of the video, dem-
onstrating a significant advancement in data compression and
retrieval efficiency.
Inspired by the NeRV model, we adapt their network structure to

develop a specialized architecture for interpolating 5D seismic data,

termed NeRSI. The NeRSI architecture, as shown in Figure 5a,
comprises the MLP encoder followed by multiple NeRSI blocks
that contain convolutional layers. By integrating these blocks be-
hind the MLP, we can leverage shared convolutional kernels to pro-
duce all points in the output profile simultaneously, enhancing the
efficiency and effectiveness of the framework. In addition, to effi-
ciently capture the mapping function Nτð·Þ between encoded coor-
dinates and seismic profiles, we adopt a similar approach from
StyleGAN (Karras et al., 2019) for its advanced pattern and detail
recognition capabilities. Specifically, we introduce nonlinear trans-
formation layers to condense the encoded coordinates ΓðvÞ to the
latent variable ϕ. This latent variable ϕ functions as a compact
representation in the mapping process, enhancing the model’s
efficiency and accuracy in interpreting complex seismic data.
The NeRSI blocks, shown in Figure 5b, serve as the decoder for

the output seismic profile from ϕ. To preserve the output dimension,
it adopts the PixelShuffle technique (Shi et al., 2016) for the upscal-
ing process. Moreover, convolution and activation layers are inte-
grated to enhance network expressiveness. Undoubtedly, NeRSI is a
compact and lightweight network model that uses coordinate em-
bedding to generate the corresponding profiles. The profile-wise
approach significantly improves efficiency. In addition, the self-su-
pervised learning procedure eliminates the requirement for extra-la-
beled data, rendering the NeRSI method exceptionally suitable for
field seismic data interpolation tasks.

Nuclear norm regularization

The performance of equation 8 is satisfactory for noise-free data.
However, field data are always contaminated by noise, complicating
the accurate discernment of useful signals. Another notable chal-
lenge is the network’s tendency to fit this noise, leading to outputs
riddled with noisy reconstructions. As we discussed previously,
seismic signals typically exhibit low-rank characteristics. Incorpo-
rating this intrinsic property into our objective function will more
effectively extract the desired events and significantly improve
denoising performance.
As a convex relaxation form of low-rank regularization, nuclear

norm regularization is a widely used technique designed to enhance
the generalization capability of models while controlling their com-
plexity. Therefore, we also integrate nuclear norm regularization into
our method. The nuclear norm of the matrix X is defined as follows:

Figure 6. Position encoding results of 100 samples.

Figure 7. Positional coding validation. (a) Original 2D seismic sig-
nal, covering 3.84 km with a 40 m trace interval, (b) results obtained
using an MLP with positional coding, and (c) results obtained using
an MLP without positional coding. The MLP exhibits significant dif-
ficulty in extracting reflections with the same number of training
epochs.
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kXk� ¼
Xk
i¼1

σi; (10)

where σ1, σ2, : : : , and σk are the ordered singular values of X. By
incorporating this regularization into our original loss function in
equation 8, a modified objective function for noisy data
reconstruction is formulated as follows:

J4ðθÞ ¼
XMx

mx¼1

XMy

my¼1

kMθðvÞ ∘ UðP∶;mx;my;∶;∶Þ

− X
ðmx;myÞ
ð1Þ k2F þ λkMθðvÞk�; (11)

where the notation k · k� denotes the nuclear norm, and λ is a hyper-
parameter for balancing the loss components. By selecting an appro-
priate weight λ, we can ensure that the network’s output satisfies the
low-rank assumption during training, thereby enhancing the model’s
robustness to noise. After training, we process each v ¼ ðmx;myÞT to
acquire its respective profile for seismic data reconstruction. Our
method not only fits the seismic profiles but also harnesses data re-
dundancy and wavefield consistency to reduce the impact of noise
effectively. A balance is achieved between fidelity to observations
and regularization, leading to optimal output results.

EXPERIMENTS

Synthetic data example

We first use an open 5D seismic data set (Society of Exploration
Geophysicists, 2024) with manual decimation to validate the effec-
tiveness of the coordinate-based neural implicit representation ap-
proach in seismic data interpolation. This 5D seismic data set
comprises 51 sail lines, each with 96 shots and eight cables per shot
with 68 receivers per streamer. There are 625 samples along the time
dimension with an 8 ms time interval. Consequently, it has a data size
of 625 × 51 × 96 × 8 × 68. In addition, the data are not corrected by
NMO, thereby posing a significant challenge for data reconstruction
algorithms. Our focus is on sail lines 25 to 41, from which we gen-
erate the data set Oðt; sx; sy; rx; ryÞ of size 384 × 16 × 32 × 8 × 32

to validate the proposed methods. To simulate real-world seismic data
scenarios involving missing traces, we use a masking process that
randomly removes seismic traces. In our experimental setup, we de-
liberately eliminate 80% of seismic traces, resulting in a highly sparse
data set, denoted asOobs. This deliberate sparsity simulates the chal-
lenges often encountered in seismic data processing, providing a rig-
orous test for our proposed methods.
Then, we use the point-wise method (Liu et al., 2024) shown in

Figure 2 to reconstruct the decimated seismic data. Specifically, we
use a 17-layer MLP network with 384 neurons in the hidden layer.
Within the FFMmodule, we opt for L ¼ 10 for encoding each input
coordinate, with the frequency ω varying exponentially. During the
self-supervised training process, the network mentioned previously
exhibits ample network capacity. This allows us to directly encode
the entire Oobs into the MLP, bypassing the need for sliding over-
lapping window processing typically used in traditional methods.
After training, we query each coordinate point to obtain its corre-
sponding seismic amplitude value.
Despite its efficacy in recovering missing traces, the point-wise

training strategy, which operates on a point-by-point basis, is not

sufficient. To address this, we apply the proposed profile-wise
method, NeRSI, to reconstruct the preceding data. Specifically, the
strategy described in equation 7 is used to extract slices of Oobs

to construct a training set consisting of 4096 (16 × 32 × 8) seismic
profiles. In the FFM module shown in Figure 5, we use an exponen-
tial variation of the frequency ω and set K ¼ 40 for encoding each
input coordinate. The encoder includes two fully connected layers,
and the decoder comprises three NeRSI modules, each with an up-
sampling rate of two. It is worth noting that we do not use the nuclear
norm in this example because the data set is clean.
The S/Ns of the results obtained from the preceding two methods

are presented in Table 1. This table reveals that, overall, the profile-
wise method achieves an S/N that is 2.88 dB higher than the point-
wise method while also processing the data 40 times faster. We select
an effective conventional baseline method, PMF-TR (Liu et al.,
2022), for further comparison. The comparative results are shown
in Figure 8. Figure 8a shows eight gathers from the complete data
with sx ¼ 16, ry ¼ 32, sy ranging from 1 to 16, and rx ranging from
1 to 8. We can see that the original data comprise horizontal and dip-
ping events, presenting a challenge for reconstruction. Figure 8b plots
the decimated data with 80% irregularly missing traces. The recov-
ered results by PMF-TR, the point-wise method (Liu et al., 2024),
and the proposed profile-wise method are shown in Figure 8c, 8e,
and 8g, respectively, with the corresponding reconstruction errors
shown in Figure 8d, 8f, and 8h. All three methods are effective in
data interpolation. Quantitative calculations reveal S/Ns of 12.37,
16.61, and 18.67 dB for the PMF-TRmethod, the point-wise method,
and the profile-wise method, respectively. Both implicit representa-
tion methods outperform the PMF-TR method, demonstrating the
superior performance of these networks. Furthermore, as indicated
by the blue arrows, the dipping structure in the complete data is
not fully recovered by the PMF-TR and point-wise methods. In the
area marked by the yellow arrows, it is apparent that the PMF-TR
method and the point-wise method exhibit useful signal leakage.
In contrast, the profile-wise method proposed in this paper success-
fully recovers the dipping structure and does not have an obvious
leakage of useful signals. This may be attributed to the convolutional
network-style decoder of the profile-wise method, which has a larger
receptive field, thus providing superior feature extraction ability for
reconstructing data with complex structures.
To summarize, through testing on synthetic data with complex

structures and a high rate of missing values, the proposed method
leverages unsupervised learning to thoroughly examine the continu-
ous wavefield of synthetic data, yielding excellent reconstruction
results while maintaining high efficiency. Notably, it effectively re-
constructs seismic data without NMO, showcasing the network’s
impressive ability to capture the inherent structure of seismic data.
Visually and quantitatively, the proposed method outperforms tradi-
tional methods.

Table 1. Evaluation of point-wise and profile-wise reconstruc-
tion methods on synthetic data.

Method S/N (dB)
Training
time (min)

Testing
time (s)

Total time
consumption

(min)

Point-wise 12.88 890 600 900

Profile-wise 15.16 21 75 22.25
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To further demonstrate our proposed unsupervised interpolation
method, we use synthetic data to compare with two existing algo-

rithms, SSLI (Fang et al., 2023a) and DPSI (Kong et al., 2020).
Specifically, we use 5D data Oðt; sx; sy; rx; ryÞ as described previ-
ously, with dimensions 384 × 16 × 32 × 8 × 32, wherein 70% of
seismic traces are randomly removed to simulate real-world data
gaps. Because DPSI is limited to 3D data, we extract a 3D subset
with dimensions 384 × 32 × 32 from Oðt; sx; sy; rx; ryÞ by setting
sx ¼ 8 and rx ¼ 4 for testing purposes. For the SSLI method, we
extract 20,000 32 × 32 × 32 3D cubes from Oðt; sx; sy; rx; ryÞ to
train the network. After training, we use the network to process
the entire Oðt; sx; sy; rx; ryÞ and extract the same portion corre-
sponding to the DPSI method for comparison. Specifically, we com-
pare the extracted portion from our results against those from SSLI
and DPSI, displaying the outcomes in two dimensions, as shown in
Figure 9. All three methods effectively reconstruct the missing seis-
mic traces. However, our method demonstrates the least signal leak-
age when comparing the residual results.
Table 2 shows a quantitative comparison, showing DPSI achieving

an S/N of 12.04 dB, SSLI at 15.53 dB, and our method achieving
17.16 dB. Moreover, our approach boasts higher efficiency. For the
5D data Oðt; sx; sy; rx; ryÞ of size 384 × 16 × 32 × 8 × 32, NeRSI
and SSLI require 22 and 44 minutes, respectively, to finish the training
and testing. On average, for a 3D cube of size 384 × 32 × 32, NeRSI,
SSLI, and DPSI require 10 s, 20 s, and 11 min on the same graphics
processing unit, respectively. Compared with DPSI and SSLI, our
method directly processes 5D data and outputs by profile with high
efficiency. It surpasses other unsupervised learning methods in the re-
constructed data’s S/N ratio and processing speed, fully showcasing
the potential of our method in seismic data interpolation.

Field data experiment

Compared with synthetic data, field data exhibit greater complex-
ity and are significantly affected by noise, posing considerable chal-
lenges for network training. We also choose PMF-TR as a baseline
method to evaluate the effectiveness of our proposed profile-wise
reconstruction methods and use the same land data set obtained in
Canada for comparison (Liu et al., 2022). Similarly, we first organize
the irregularly sampled acquisition data into grids. Each grid has a
CMP area of 20 m × 20 m, an offset of 400 m, and an azimuth of
45°. Within each grid, we compute the average of the traces falling
within it. After this binning process, the binned data consist of 601
time samples, 38 CMP x-points, 76 CMP y-points, 12 offsets, and
eight azimuths. As a result, we refer to the incomplete 5D field seis-

mic data set as Dobsðt; mx;my; jhj; AzÞ, where jhj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y

q
and

Az ¼ arctanðhx=hyÞ. Notably, this field example exhibits a trace-
missing ratio of 94.39%.
For this data set, we use an exponential variation of the frequency

ω and choose K ¼ 80 to encode each input coordinate in the FFM
module. The encoder has two fully connected layers. For decoding
the intermediate latent variables ϕ, we use three NeRSI modules

Figure 8. A comparison of the results obtained using different
methods to reconstruct synthetic data. (a) Eight gathers from the
complete data, each with an 80 m trace interval; (b) decimated data
with 80% of traces irregularly missing; (c and d) the recovered re-
sults and reconstruction errors using the PMF-TR method, respec-
tively; (e and f) the recovered results and reconstruction errors using
the point-wise method, respectively; and (g and h) the recovered
results and reconstruction errors using the profile-wise method, re-
spectively. The blue arrows indicate the incomplete recovery of the
dipping structure in the complete data by the PMF-TR and point-
wise methods. Both methods exhibit signal leakage in the region
marked by the yellow arrows. In contrast, our profile-wise method
performs better, effectively recovering the dipping structure in the
complete data without significant signal leakage.

Table 2. Evaluation of three unsupervised reconstruction
methods on synthetic data.

Method S/N (dB) Average time consumption

DPSI 12.04 11 min

SSLI 15.53 20 s

NeRSI 17.16 10 s
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with upsampling rates of five, two, and two, respectively. Sub-
sequently, we construct a training set consisting of 2888 (38 × 76)
seismic profiles, as per the method outlined in Figure 3a. The model
is then trained following equation 11.
Figure 10 shows a slice view of the reconstruction results using the

PMF-TR and NeRSI methods for these field data. Specifically, Fig-
ure 10a shows CMP y-sections of the observed 5D volume with a
fixed offset (bin 6 = 2.4 km) and azimuth (bin 4 = 135°). The original
data section contains a significant number of missing traces and
noise, presenting a considerable challenge for reconstruction. Fig-
ure 10b shows the CMP y-section results obtained by PMF-TR,
wherein the missing content in Figure 10a is effectively recovered.
However, some noise interference persists in the shallow layer, ob-
scuring the desired events. Figure 10c shows the results from NeRSI,
wherein all missing traces in Figure 10a are accurately recovered.
Compared with the PMF-TR method, in the middeep region, approx-
imately 0.6 to 1 s, the two methods have similar results. However, in
the shallow position, due to the extremely low S/N of the original
data, the events obtained by PMF-TR are drowned out by random
noise, and the NeRSI method achieves a higher S/N and provides
more pronounced events. To further validate the effectiveness of
the proposed method, we fix CMP x (bin 4 = 0.08 km) and offset
(bin 6 = 2.4 km) and examine the results from a different perspective.
Figure 11a shows the sections of the original seismic records, which
exhibit larger gaps compared with Figure 10a. Figure 11b and 11c

shows the result obtained from the PMF-TR method and the pro-
posed method, respectively. The NeRSI method effectively recovers
the missing traces, even in locations with significant gaps, suggesting
that the network has truly learned the intrinsic 5D wavefield. Com-
pared with the PMF-TR method, both methods yield impressive re-
sults in the region highlighted by the blue box in Figure 11, whereas
the NeRSI method demonstrates superior lateral consistency in re-
covered reflections. However, within the area marked by the red
box, significant noise is observed in the results from the PMF-TR
method. In contrast, using the NeRSI method leads to a more pro-
nounced enhancement of horizontal continuity in the reconstruction
results and exhibits better robustness to noise while performing data
interpolation. In addition, our analysis revealed that the NeRSI
method brings to light more faint events that were previously over-
shadowed by noise in the PMF-TR results. This means that our
method not only maintains critical data but also unveils additional
geologic information that can be obscured by noise in other methods.
Thus, we believe that the NeRSI method offers a more robust and
comprehensive approach to seismic data analysis.
For a comprehensive comparison, Figure 12a shows the stacking

data before interpolation. The original stacking data have a notably
low S/N, and many reflections are obscured by noise, particularly
in the shallow-layer regions. The reconstructed stacking cubes ob-
tained using the PMF-TR andNeRSImethods, as shown in Figure 12b
and 12c, respectively, effectively eliminate prestack noise and

Figure 9. A comparison of the results obtained us-
ing different unsupervised methods to reconstruct
synthetic data. (a) Complete data with an 80 m
trace interval; (b) decimated data with 70% of
traces irregularly missing; (c and d) the recovered
results and reconstruction errors using the DPSI
method, respectively; (e and f) the recovered re-
sults and reconstruction errors using the SSLI
method, respectively; and (g and h) the recovered
results and reconstruction errors using the profile-
wise method, respectively.
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Figure 10. A slice view of the CMP y gather results of the seismic data by assigning offset = 2.4 km and azimuth = 135°. (a) The original field
data with CMP x-intervals of 20 m, (b) the results of reconstruction using the PMF-TR method, and (c) the results of reconstruction using the
NeRSI method.

Figure 11. A slice view of CMP y-gather results by assigning offset = 2.4 km and CMP x ¼ 0.08 km. Azimuth bin ½1; 8� is equivalent to [0°,
315°] with an increase of 45°. (a) The original field data, (b) the results of reconstruction using the PMF-TR method, and (c) the results of
reconstruction using the NeRSI method.
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significantly enhance the signal energy compared with the original
stacking data in Figure 12a. However, the profiles shown in Figure 12b
still display slight residual noise in the shallow-layer region. In con-
trast, a very low level of random noise can be observed in the profiles
shown in Figure 12c, thereby confirming the effectiveness of the pro-
posed NeRSI method in recovering noisy and irregularly sampled
seismic data.
In addition, to demonstrate the effectiveness of our method in sup-

pressing noisewhile preserving essential structural information within
the data, we conducted an exhaustive stacking analysis on a region
rich in patterns using the same network. The positional encoding
length is chosen with K ¼ 120, and the regularization factor λ is
5e−5. The stacking results before and after reconstruction are shown
in Figure 13. Figure 13a is the stacking result before reconstruction,
and Figure 13b is the stacking result after reconstruction using the
NeRSI method. These results show that our approach preserves
the prominent structural features of the original stacking results.
The regions within the red, green, and blue boxes are selected for
detailed magnification. In the area marked by the red box, the events
previously obscured by noise before reconstruction became clear.
Within the green box, the faint events were enhanced while maintain-
ing their structure before reconstruction. In the region demarcated by
the blue box, the enhancement of horizontal event energy is observed,
with the steeply dipping events, indicated by the yellow arrow, being
well preserved. Compared with the prereconstruction state, the struc-
ture became significantly clearer. This observation underscores that
the NeRSI method effectively suppresses noise without compromis-
ing the preservation of crucial data structures, further demonstrating
the potential of the NeRSI method in actual 5D seismic data interpo-
lation.

Ablation experiment

In Figures 10 and 11, it is evident that the data recovered by the
NeRSI method exhibit a higher S/N. One contributing factor is that
the network is trained to fit 2888 profiles simultaneously during
training. The consistent nature of seismic wavefields enables the
effective utilization of redundancy in the 5D data to mitigate the
impact of noise. A more pivotal factor is the selection of structurally
well-defined profiles as the network output and the application of
nuclear norm regularization. In equation 11, the fidelity term forces
the model output to approximate the observations closely. However,
the observations often contain significant noise. In contrast, the nu-
clear norm regularization imposes a constraint on the model to out-
put a profile with as small a rank as possible, thereby achieving a
higher S/N. By carefully selecting an appropriate value for λ by grid
search, a balance can be struck between the fidelity term and the
regularization term, leading to satisfactory reconstruction results.
To validate the effect of the nuclear norm regularization, we se-

lect other 5D field data collected in China (Chen et al., 2021c). This
data set consists of 250 temporal samples with a sampling rate of
4 ms, 10 midpoint x-samples, 10 midpoint y-samples, 21 offset x-
samples, and 10 offset y-samples. The proportion of the missing
traces in the data set is as high as 82%. We set λ ¼ 0 and
λ ¼ 1e−4 in equation 11 to train the model and reconstruct the field
data, respectively. In Figure 14, we present a set of original CMP
gathers with CMP x ¼ 2 and CMP y ¼ 2. These gathers collectively
form a profile with dimensions of 250 × 210, covering a range of 21
offset x-samples and 10 offset y-samples. Figure 14b corresponds to
the reconstruction results without nuclear norm regularization

Figure 12. Stacking result comparisons. (a) Before reconstruction,
(b) after reconstruction using the PMF-TR method, and (c) after
reconstruction using the NeRSI method.
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(λ ¼ 0), whereas Figure 14c corresponds to the reconstruction re-
sults with λ ¼ 1e−4. Comparing Figure 14b with Figure 14c, it is
clear that as λ changes from 0 to 1e−4, the reconstruction results
exhibit reduced noise interference and more coherent, continuous
reflection events. This highlights the effectiveness of using nuclear
norm constraints. However, when λ exceeds a certain threshold, we
notice a slight degradation in the quality of reconstruction, indicat-
ing the need for a careful balance between data fidelity and regu-
larization.

CONCLUSION

We leverage implicit neural representation to establish a self-su-
pervised learning-based 5D seismic data interpolation model. By
training an MLP network with limited samples from observed data,
the entire seismic wave field is encoded into the MLP’s weights.
Querying this network on the wavefield at locations with missing
data allows for reconstructing the complete data set. To enhance the
efficiency of the model, we propose a novel network structure that

Figure 13. Large-scale stacking result comparison from the same work area of Figure 10. (a) Before reconstruction and (b) after reconstruction
using the NeRSI method. The areas within the red, green, and blue boxes are selected representative patterns for detailed magnification.
Compared with the yellow arrowed areas, the diffraction waves are well preserved.

Figure 14. A test of the effect of nuclear norm
regularization. (a) The incomplete seismic data
with an 80 m trace interval, (b) the reconstruction
results without nuclear norm regularization, and
(c) the reconstruction results with nuclear norm
regularization.
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uses a convolutional network serving as the decoder to produce
seismic profiles. This technique achieves a speed improvement of
40 times compared with the point-wise prediction method. In ad-
dition, a nuclear norm constraint is applied to the seismic profiles
to boost the model’s robustness against noise. The experiments in
synthetic and field data indicate the effectiveness of the model in
handling data with high missing rates and complex structures.
These results also reveal the significant potential of coordinate-
based models for efficient seismic data interpolation. Future work
will focus on offgrid seismic data interpolation.
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