IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

5901912

A Cascaded Synchrosqueezing Transform for
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Abstract— Time—frequency (TF) analysis represents a potent
tool for processing and interpreting seismic data. Synchrosqueez-
ing transforms (SSTs) remarkably enhance frequency resolution
by accumulating coefficients along the frequency axis. However,
their TF resolution is related to their mother’s TF transforms.
The high-order Fourier-based SST (FSST) with a long window
exhibits improved frequency resolution, albeit at the cost of
mixing detailed frequency variations. Conversely, a high-order
FSST with a short window provides enhanced time resolu-
tion but suffers from low-frequency resolution and component
interference between multiple components of a complex signal.
To ameliorate this, our study proposes a cascaded high-order
FSST. Our proposed approach commences with a long-window
high-order FSST to decompose a complicated signal into multiple
components. Subsequently, a short-window high-order FSST
is applied to each component. By summing the squeezed TF
representations of all components, we generate a TF represen-
tation that boasts the improved TF resolution with the cost
of involving multiple high-order FSSTs. The visual evaluation
and sparsity measure are used to show our method’s efficacy
and TF resolution over common high-order FSST through a
synthetic multicomponent signal (MCS) with two components.
The wavelets interference would make the seismic signal’s
frequency component change. Therefore, further substantiation
comes from two wavelet-interference-related examples: the field
data example about cycle interbeds and an HST-induced seismic
data example, wherein our proposed transform demonstrates its
superior ability in precisely tracking subtle frequency variations
with time and its advantages over common high-order FSST in
extracting cycle thin-interbeds’ thickness variation along depth
and characterizing the HST speed.

Index Terms— Cascaded synchrosqueezing transform (SST),
seismic data analysis, short-time Fourier transform (STFT).

I. INTRODUCTION
EISMIC signals are commonly represented as the convo-
lution of time-varying wavelets and reflection coefficients,
rendering them archetypal time-varying signals. Traditional
time-domain and frequency-domain analyses fall short of
capturing the concomitant variations in energy distribution
across both time and frequency simultaneously. Therefore,
they cannot sufficiently analyze this typical time-varying sig-
nal. In contrast, time—frequency (TF) analysis can analyze
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a time-varying signal from the time and frequency domain
simultaneously. This advantage has led to its widespread
application in seismic signal processing and interpretation.
Noteworthy applications include spectral decomposition [1],
[2], [3], [4], [5], sequence analysis [6], instantaneous attribute
extraction [6], [7], [8], reservoir characterization [9], [10],
[11], as well as fault detection [12], [13].

Many TF analyzing methods have been proposed to extract
the energy distribution in the TF domain. Short-time Fourier
transform (STFT) [14], continuous wavelet transform (CWT)
[15], [16], and the Stockwell transform (ST) [17] are the three
typical representatives of the linear TF transform. Compared
with the STFT’s fixed window function, CWT and ST utilize
a frequency-varying window function. Thus, CWT and ST
have higher frequency resolution and lower time resolution at
the low-frequency part, but have lower frequency resolution
and higher time resolution at the high-frequency part. These
linear TF transforms have a signal reconstruction ability, but
suffer from a limited TF resolution due to the uncertainty
principle [18]. The Wigner—Ville distribution (WVD) aimed
to break the TF resolution limit caused by the uncertainty
principle. Although WVD can provide a perfect TF spectrum
for some simple signals, it suffers from severe cross-term
interference [19]. The Cohen class TF distribution smoothens
the WVD to suppress the cross-term interference but bears
some disadvantages, such as negative values, cross-term inter-
ference, the loss of TF resolution, and irreversibility [20].
Although the spectrum reassignment can sharpen the TF
spectrum by accumulating each TF point’s energy to its
gravity center [21], [22], it cannot be used to reconstruct the
signal.

Many signals in the real world can be modeled as a superpo-
sition of some amplitude-modulated and frequency-modulated
(AM-FM) components. Therefore, they are called multicom-
ponent signals (MCSs). Newly developed synchrosqueezing
transforms (SSTs), which are based on some commonly
used linear TF representations, such as STFT, CWT, and
ST [4], [23], [24], [25], have been designed to deal with
the MCS. They can improve the TF resolution by moving
the TF coefficients along the frequency direction and can be
used to reconstruct the signal spontaneously. These common
SSTs can generate a perfect TF spectrum for the MCS with
sinusoidal components. To deal with the MCS with linear FM
components, second-order SSTs have been proposed to further
improve the TF spectra’s concentrations [26], [27], [28],
[29]. To achieve a concentrated time-frequency representation
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(TFR) for an MCS with quadratic or cubic FM components,
SST has been extended to high-order SST [30], [31]. Because
the SSTs can provide a concentrated TF representation, they
have been extensively used in seismic data processing and
interpretation like noise attenuation [32], [33], [34], [35], [36],
spectrum decomposition [37], [38], [39], [40], [41], [42], [43],
[44], seismic data interpretation [2], [4], [28], [45], [46], [47],
gas reservoir identification [9], [25], [48], [49], seismic data
modal separation [50], [S1], quality factor estimation [52],
phase compensation [53], [54], inversion [55], coherence
extraction [56], and reservoir characterization [57], [58].

Many SSTs, such as STFT-, CWT-, and ST-based SST, have
been successfully used to obtain the high-TF resolution spectra
for the MCS. However, because they only move TF coeffi-
cients along the frequency or time direction, they may not track
each component’s slight frequency variation along time for an
MCS. In this study, we mainly focus on the Fourier-based
SST (FSST), which has a fixed TF resolution in the entire TF
domain and try to improve it. Although the Nth order FSST
(FSSTN) [30] can produce a more concentrated TF spectrum
than STFT and other lower order FSSTs, it still suffers from
some problems. Suppose there is one MCS that contains two
slanted FM components whose instantaneous frequency (IF)
has a small periodic fluctuation. Besides, the frequency interval
between two components is minimal. The FSST4 of this MCS
suffers from low time resolution or component interference.
Fig. 1(a) and (b) shows this MCS’s two TF spectra based
on STFT and FSST4 with a long Gaussian window function.
The long window STFT [Fig. 1(a)] mixes the frequency
variation. Therefore, although long window FSST4 [Fig. 1(b)]
can provide a very concentrated TF spectrum to depict two
components’ approximate frequency variation trend, it could
not track the ideal frequency variations, which are indicated
by two blue curves in Fig. 1(b). That is to say, the long
window STFT and FSST suffer from low time resolution. The
middle window STFT [Fig. 1(c)] still cannot reflect these two
components’ frequency variations, but it appears that the two
components are not purely linear chirps. Although the middle
window FSST4 [Fig. 1(d)] can provide a more concentrated
TF spectrum, it cannot track the ideal frequency variation.
In addition, FSST4 with a middle window suffers from little
interference between the two components. The small window
STFT [Fig. 1(e)] and corresponding FSST4 [Fig. 1(f)] can
show the frequency variation over temporal direction but
are strongly affected by the two components’ interference.
Therefore, the small window FSST4 does not concentrate near
the ideal frequency curves [Fig. 1(f)]. In summary, although
the high-order FSST can gain an ideal TF performance for one
component signal, it still cannot balance the time resolution
and the component interference.

Therefore, this study simultaneously enhances the time reso-
lution and reduces component interference in high-order FSST,
proposing a cascaded FSST approach for precise seismic
signal analysis. This study is organized as follows. Section II
introduces the theoretical principles of FSSTN and the pro-
posed cascaded FSST. Section III demonstrates a synthetic
data example to demonstrate the proposed transform’s advan-
tages over the commonly used high-order FSST. In addition,
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Fig. 1. TF spectra of one synthetic MCS with two slanted FM components.
(a) STFT and (b) FSST4 with a long Gaussian window (o = 0.275). (c) STFT
and (d) FSST4 with a middle Gaussian window (o = 0.15). (¢) STFT and
(f) FSST4 with a short Gaussian window (o = 0.03). The blue curves show
the ideal instantaneous frequencies of two FM components.

one oilfield data example and one high-speed train (HST)-
induced seismic data example are utilized to illustrate the
proposed method’s precision. Some conclusions are drawn in
Section IV.
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II. METHOD

A. Short-Time Fourier Transform (STFT)

Let g(t) be an even, real-valued window function with a
unit norm. The STFT of the signal x(¢#) with respect to the
window function g(¢) can be defined by

Velt, @) = /x(f)me’j‘“(””dr
R
= /X(T+l)ﬁe_j‘”dt (1)
R

where g(t) represents a window function, and g(¢) represents
the conjugate of g(¢). The STFT definition in (1) differs from
the usual definition by a factor e~/“'. Meanwhile, the STFT
in (1) can be realized in the frequency domain as follows:

1 - .
Ve(t, w) = " / X(@0)G(w) — w)e ' dw, 2)
R

where X (w) and G(w) represent the Fourier transforms of
signal x(¢) and window function g (), respectively. The signal
can then be reconstructed by using either of the following
methods:

x(t) = i// Vo (t, w)g(t — t)e!*""dtidw (3)
2

or
1
278(0)

x(t) = / Ve (t, w)dw. @)
R

The second reconstruction in (4) is frequently adopted due to
its high efficiency compared with the method in (3). In addi-
tion, the integration range in (3) and (4) can be restricted to a
small area to reconstruct the interested part. However, we must
mention that the TF resolution of the STFT cannot overcome
the restriction caused by the Heisenberg uncertainty [18].

B. MCS Model

A real signal can be converted to a complex signal via the
Hilbert transform. If we let A(¢) and ¢ (¢) be the instantaneous
amplitude (IA) and instantaneous phase (IP), respectively, and
let A(¢) and IF ¢'(¢) be positive and slowly varying, then the
oscillating function x(¢) = A(t)e/*® is one AM—FM mode.
The IA and IF can be easily approximated in the vicinity
of a fixed time. A first-order expansion of phase ¢(¢) and a
zeroth-order expansion of A(#) can lead to an approximation
of x(t) near ¢t

(1) & Ar)el [P0+ 0] 5)

where 7 is a time that is close to the fixed time ¢. The STFT
of x(¢) can be approximated via the STFT of x,(7) [24]

Ve(t, 0) = x(1)G (@ — ¢'(1)). (6)

The expression in (6) proves that the support region of V, (¢, w)
is restricted to one TF strip that is centered on the ridge
corresponding to the IF ¢'(¢), with the width of the TF strip
dependent on the width of G(w).
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The MCS can be defined as the superposition of ¥ AM-FM
components

M M
x(t) = me(t) = Z A, (1)eltn® 7
m=1 m=1

where x,(r) satisfies ¢j(t) < ¢,(t) < -+ < ¢},(t). Each
mode can be distinguished and retrieved via the STFT of x(¢)
when the distance between two ridges is larger than the width
of G(w).

C. Nth-Order STFT-Based SST (FSSTN)

Suppose we have a component x(¢) = eAO+/¢®  where
A(t) and ¢ (¢) are two Nth-order polynomials, and the Nth-
order Taylor expansions of A(t) and ¢(¢) at time ¢ can be
expressed as follows:

K A0

AT+ =) A k'(t)rk (8)
k=0 '
K p0

pe+n=3 "0 ©)
k=0 '

where A®(7) and ¢® (¢) denote the kth derivatives of A(z)
and ¢ () at time . The AM-FM component x(tr) has an
expansion at time ¢

K

(k) : (k)
x(r—i—t):exp{ZA ) + job (t)rk}. 10)

k!
k=0

After replacing the x (7 +1¢) in (1) with (10), the STFT of x(7)
can be reformulated as follows:

K

(k) - 1 (k)
Vo = | ex,,{z A(MM}W[I
R

= k!
Y

By taking the partial derivative of V, (¢, ) for ¢, (11) can be
changed to

AY@ +je @)
(k — 1!

Vi (t o) (12)

K
AV (t,w) =)
k=1

where Vii-1,(f, w) is a signal’s STFT with the window function
k=1 g(t). The local complex IF @(f, w) can be estimated by
dividing by 9,V (¢, w) with jV,(t, )

o) = 2V @)
JVe(t, o)
K Vi1, (t, o)
— A / e K1 py L1718 @)
= JA<t)+¢<t)+kZ=;q (t) Vo) (13)
where
(k) _ i)
q[k,K](t):A (1) — jo™ () (14)

k= 1)!

where ¢'(¢) in (13) is the actual IF for x(z). Therefore, one
critical step in FSSTN is to estimate ¢'(z).
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1) First-Order FSST: If A(t) and ¢ (¢) are two first-order
polynomials, (13) can be simplified to

o, o) =—jA' (1) +¢'(0).

Then, the actual IF ¢’(¢) can be estimated by the real part of
w(t, w)

(15)

0, V,a(t, w)
JVe(t, w)
where Re(z) represents extracting the real part of a com-
plex number z. Then, the first-order FSST FSST(¢, w) of

component x(z) can be obtained by accumulating the STFT
coefficient in (¢, @) to a new position (¢, (¢, w))

(1, w) = ¢'(t) = Re[d(r, w)] = Re{ ] (16)

FSST(r,w):/Vg(t,wl)a[w—c:)“](t,wl)}dwl (17)
R

where §(w) represents the Dirac delta function.
2) Second-Order FSST (FSST2): If A(t) and ¢(t) are two
second-order polynomials, (13) can be simplified to

o, w) = —jA (1) + ' (1) + ¢ () X0 (1, 0)  (18)
where
ng](l‘, a)) = 7‘/8([, a)) . (19)

To estimate the IF ¢'(f) in (18), we must know ¢!>2!(z).
By taking the partial derivative of the left and right terms
in (18) for w, one estimation of ¢'>?!(r) can be calculated by

N 0,0(t, )
§*A (1 0) =
8a)X2,1(t7 (1))

Then, the actual IF ¢’(¢) can be estimated by

(20)

&P (t, w) = real [0(1, ) — §P2(1, ) X2 (1, @)].  (21)

Then, second-order FSST FSST2(¢, ) of component x(¢) can
be obtained by accumulating the STFT coefficient in (¢, ®) to
a new position (¢, ®?!(zt, w))

FSST2(t, w) = / Ve(t, 01)8[w — P(t, 1)]dwr.  (22)
R

3) Third-Order FSST (FSST3): If A(t) and ¢ (t) are the two
three-order polynomials, (13) can be simplified to

3
ot w)=—jAO+ O+ ¢ OXei(t w) (23)
k=2

where
‘/tk—lg (t, w)

Xk,l(t,(l)): V(t CL))
g\

(24)

To estimate the IF ¢'(¢) in (23), we must know q[2’3](t) and
g31(¢). By taking the partial derivative of the left and right
terms in (23) for w, (23) can be changed to
d@(1, @) = ¢ (1)8, X211, @) + ¢ (1)3, X531 (1, w).
(25)

Equation (25) can be simplified to

Yi(t, ) = ¢ @) + ¢ 1) X321, w) (26)
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where
0,0(t,
Vil o) = 200 ?) 27)
00 X2,1(t, ®)
00 X3,1 (1, @)
X3(t, = — 28
32(f: @) 0,X,1(t, ®) (23)

One estimation of ¢!*3!(¢) can be estimated by computing the
partial derivative of the left and right terms in (26) for w again

8a) Yl ([, a))
0. X32(1, )
By replacing ¢P*3(¢, w) in (26) with (29), ¢'>3!(t) can be
estimated by

§*Nt, 0) = 111, 0) =GP, ) X35, @), (30)

After obtaining the estimations of ¢'>3!(r) and ¢[*3(¢), the
actual IF ¢'(¢) can be estimated by

§B3(t, w) = (29)

~

APl(t, 0) = real [d(t, w) — 471, ) X2, (1, )
— "t ) X351, w)]. (B

Then, third-order FSST FSST3(¢, w) of component x(¢) can
be obtained by accumulating the STFT coefficient in (¢, ®) to
a new position (¢, o8 (¢, w))

FSST3(, ») = /

R
Similarly, the fourth-order FSST (FSST4) and higher order
FSST can be computed with the same but more complicated
iterative procedure. Furthermore, all FFSTNs can be used to
reconstruct the signal by replacing V, (¢, ) in (4) with FSSTN.

Ve(t, 0)8[w — &P(t, 0)]dwr.  (32)

D. Cascaded FSSTN

Although the long window high-order FSST has good
frequency resolution in the TF domain, it mixes the detailed
frequency variation for a complicated FM component [as
shown in Fig. 1(a) and (b). Therefore, the long window
high-order FSST suffers from a low time resolution in the
TF domain. The short-window STFT and short-window high-
order FSST have good time resolution but suffer from low
frequency resolution and component interference for an MCS
[as shown in Fig. 1(e) and (f). Here, a cascaded high-order
FSST is proposed to improve the low time resolution for
long window high-order FSST and components interference
for short window high-order FSST.

Here, the Gaussian function is used as a window function
for STFT and FSSTN. The long window high-order FSST
has good frequency resolution. Therefore, we utilize long
window high-order FSSTN to an MCS x(¢) and denote it as
FSSTN(x, 0; t, w), where o is the standard deviation control-
ling the Gaussian window’s width.

To evaluate different TF spectra’s resolution quantitatively,
a sparsity measure based on accumulation is used. We reshape
2-D TF spectra to 1-D dataset and sort the 1-D dataset’s
squares in descending order. The reordering coefficients’
square is denoted by RC[n]. Assume that N is the number
of coefficients. We accumulate the RC[#n]

ACCU[m] = Z RC[n] (33)
n=1
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until we find a count M who satisfies

M—1
ACCUM — 1] = Z RC[n] < 0.99 «* ACCU[N] (34)
n=1
and
M
ACCU[M] = ZRC[n] > 0.99 * ACCU[N]. 35)
n=1

Then, the sparsity measure of FSSTN(x, o; ¢, w) can be
defined as the ratio between M and N, and represented
by SPAR[FSSTN(x, )]. The concentrated TF spectra would
generate a sparsity measure approaching 0.

To get a TF spectrum with high concentration, the sparsity
measure of high-order FSST spectra with different o can be
utilized to select the optimal standard deviation oqpy;

Oopii = Min{SPAR[FSSTN(x, 0)]}. (36)

Usually, selecting the optimal o,p; need to compute a series
of FSSTNs with different standard deviations, which causes
an extensive computational cost. An alternative optimizing
method is to use the conjugate gradient algorithm to search
for the optimal oqp; [59].

FSST4 can track the frequency variation for a complicated
component than other lower order FSST. Thus, FSST4 is
always adopted. After getting a concentrated TF representation
FSST4(x, oopyi; t, ), the TF plane can be divided into several
interesting parts according to each component’s ridge [60] or
other criteria. Suppose the TF plane Dr_g is divided to K
parts and the kth part is represented as Dy, then these K parts
should satisfy

U Dy = Dy_g (37)
k

and

D,ND,=0, mmne{l,2,...,K}and m #n. (38)

The FSST4(x, oopii; t, @) within Dy can reconstruct the kth
component X ()

fk(t) = // DkFSST4(x,GOPt,~; t a))da).

In addition, the reconstruction in (39) can be limited to the
interested TF area to obtain the interested component.

Once we obtain several isolated components or the inter-
ested components, the component interference in TF analyzing
can be improved. The small window high-order FSST has a
lower frequency resolution and higher time resolution, but
it still can be used for the isolated component to obtain
the high TF representation because each component can
be reconstructed. Then, an MCS’ TF representation with a
high time and frequency resolution simultaneously can be
obtained. For the kth reconstructed component X.(¢), the
small window FSST4 can be applied and generates a TF
representation FSST4(Xy, Osman; f, ). An MCS’ final TF rep-
resentation FSST44,, (¢, w) can be obtained by summing all
FSST4()CA/<, Osmall; I, (,())

(39)

K
FSST4gnal (1, ) = Y FSST4 (%4, Omant; 1, ).
k=1

(40)
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Fig. 2. Proposed method’s flowchart.

Because {D;, D,, ..., Dk} can constitute one partition for
the TF domain, and each FSST4 is one TF transform, the
FSST46,a (2, ®) can be considered as one TF representation
of x(t). Because K + 1 FSST4 is used in the Cascaded FSST,
the computational cost would increase. The cascaded FSST
can be summarized in Fig. 2 with the following steps.

1) Compute the signal’s FSST4 with some Gaussian win-
dows with different standard deviations.

2) Using the FSST4’s TF sparsity measure to select one
optimal standard deviation o,p; Which can generate the
smallest TF sparsity measure.

3) Compute the FSST4(x, oopy; ¢, w) with the optimal stan-
dard deviation op;.

4) Divide the TF plane into K parts or select the interested
TF area.

5) Each component (or the interested components) can be
reconstructed by FSST4(x, ogpy; ¢, w) within each TF
part (or the interested TF areas).

6) Compute the FSST4 of each reconstructed component
with the short window that minimizes the sparsity mea-
sure.

7) Sum all components’ FSST4 TF representation to gen-
erate a high-precision TF representation.

III. DATA EXAMPLES

A. Synthetic MCS Example

We generated an MCS consisting of two components

x(1) = x1(t) + x2() 41)

where
x1(t) = o 025%(=5)% , j2m {201+ + o sin[ 5 (1—5)] } (42)
x(t) = o 025%(1=5) L j2r {291+ + g sin[ B (1=5)]} (43)
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Fig. 3. Synthetic MCS. (a) Waveform. (b) Amplitude spectrum.
The IFs of x;(¢) and x,(¢) are as follows:
207
IF;(t) =204 2t 4+ 0.5 x cos ?(t —-5) (44)

20.
IF,(t) =29 4+ 2t 4+ 0.5 x cos [;(r — 5)] . (45)

These two IFs have a period of 0.3-s fluctuation. In addition,
the interval between these two IFs is 9 Hz, which is very small.
The waveform and amplitude spectrum of this MCS are shown
in Fig. 3(a) and (b). The IFs of two components cannot be
observed in the time or the frequency domain. The FSST4 TF
spectra with a long Gaussian window (o = 0.275), a middle
Gaussian window (o = 0.15), and a short Gaussian window
(o0 = 0.03) are computed, and their zoomed TF spectra have
been shown in Fig. 1(b), (d), and (f). Two components’ IFs
cannot be tracked by these three TF spectra in Fig. 1(b), (d),
and (f).

The proposed cascaded FSST is applied to this MCS.
A series of Gaussian windows with different standard devi-
ations are utilized in computing the FSST4 of this synthetic
MCS. The sparsity measure of FSST4 versus standard devia-
tion is plotted in Fig. 4. We can find that the smallest measure’s
position is ¢ = 0.275. Then, the FSST4 with window size
(o0 = 0.275) of the MCS is calculated and shown in Fig. 5.
Two ridges can be observed. The TF plane can be divided
into two parts (shown in Fig. 5 with red polygon and blue
polygon), and two components can be reconstructed.

For each reconstructed component, we compute the FSST4
with a series of Gaussian windows with different standard
deviations. The sparsity measure of FSST4 versus standard
deviation curves for two reconstructed components are plotted
in Fig. 6(a) and (b). o 0.03 can make two curves in
Fig. 6 have the smallest measure. Thus, we apply FSST4
with a small Gaussian window (¢ = 0.03) to two recon-
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Fig. 5. FSST4-based TF spectra of the synthetic MCS with two slanted FM
components (o = 0.275).

structed components and obtain two TF representations [two
corresponding TF spectra are shown in Fig. 7(a) and (b)].
By summing these two TF representations, we obtain the
final TF representation and show the zoomed TF spectra
in Fig. 7(c). As a comparison, two ideal IFs are shown in
Fig. 7(d). Compared to the varying window size TF spectra
in Fig. 1, our method yields a more focused and accurate
TF spectrum [as shown in Fig. 7(c)], effectively tracking the
component’s IF variations as demonstrated in Fig. 7(d).

Furthermore, we add some white noise to the synthetic
MCS (SNR = 4.4 dB). The corresponding TF spectra of
the proposed method are shown in Fig. 7(e). Although the
TF spectra cannot precisely track the frequency variation,
it still provides a readable TF spectrum to show the periodic
frequency fluctuation.

To quantitively compare different TF spectrum’s TF con-
centration, we show the sparsity measures for different TF
analyzing methods (STFT and FSST4) in analyzing the
noisy-free synthetic MCS in Table I. The proposed method
has the smallest measure, which proves that the proposed TF
analyzing method can provide a TF spectrum with a high TF
concentration.

B. Oilfield Data Example

Cycle thin-interbeds are one typical geological structure in
seismic exploration. The layer thickness cannot be quantitively
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Fig. 6. Sparsity measure of FSST4 versus Gaussian window’s standard
deviation for small window length choosing. (a) Reconstructed component 1.
(b) Reconstructed component 2.

TABLE I

SPARSITY MEASURES FOR DIFFERENT TF METHODS IN ANALYZING THE
SYNTHETIC MCS IN FIG. 3

TF method STFT STFT STFT
(6=0275) (0=0.15) (o =0.03)
Sparsity 0.4360 0.5287 0.9387
measure
FSST4 FSST4 FSST4
TF method (o = 0.275) (o = 0.15) (o = 0.03) Proposed
Sparsity 0.0352 0.0568 0.2237 0.0019
measure

estimated from the seismic dataset because the seismic wave-
length is much bigger than the layer’s thickness. However,
a cycle of thin-interbeds with decreasing thickness will cause
its seismic response to have a TF spectrum with an obvious
increasing frequency feature, while a cycle thin-interbeds with
increasing thickness will cause its seismic response to have a
TF spectrum with a noticeable decreasing frequency feature.
Therefore, the increasing frequency feature in the TF plane
can be used to identify thin interbeds with gradually thinning
layers. In contrast, the decreasing frequency feature in the TF
plane can be used to identify thin interbeds with gradually
thicker layers. The TF spectrum with high TF resolution can be
used to track frequency variation to further reflect the layer’s
thickness variation with depth qualitatively [61].

This real field dataset consists of 1200 traces with a sam-
pling interval of 1 ms and 401 sampling points per trace
[Fig. 8(a)]. We only focus on one trace (trace 76) near
well A to demonstrate the proposed method’s ability to track
frequency variation, which can be used to reflect the layer’s
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Fig. 7. TF spectra generated by the proposed method for the synthetic MCS
with two components. The zoomed TF spectrum by applying the proposed
method to (a) reconstructed component 1 and (b) reconstructed component 2.
(c) Zoomed TF spectrum of the final TF representation. (d) Ideal IFs of two
components in the synthetic MCS (blue curves). (e) Zoomed TF spectrum by
the proposed method for the noisy situation (SNR = 4.4 dB).

thickness variation with depth in the cycle thin-interbeds [61].
The waveform of this trace is shown in Fig. 8(b), and the
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Fig. 8. Real field dataset. (a) 2-D field dataset and the focused well’s location.
(b) Waveform of the 76th trace.

target reflections are between 1290 and 1340 ms. Because the
seismic wavelength is much bigger than the thickness of the
targeted layers, it is impossible to estimate their thickness vari-
ation quantitatively. The TF spectrum with high TF resolution
can be used to estimate the thickness variation qualitatively.
An FSST4 with a long Gaussian window (o = 0.015)
is applied to this trace to generate one TF spectrum, and
the zoomed TF part related to the target area is shown in
Fig. 9(a). In addition, the FSST4 with a middle Gaussian
window (o = 0.010) is applied and the zoomed TF spectrum
is shown in Fig. 9(b). Furthermore, the FSST4 with a short
Gaussian window (o = 0.005) is applied and the zoomed TF
spectrum is shown in Fig. 9(c). Although the FSST4 can have a
good ability to depict the TF characteristic, these three FSST4s
cannot track the frequency variation precisely. The proposed
method is applied to this trace. After obtaining the FSST4 with
a long window (o = 0.015), we reconstruct the signal within
the interested part of the TF plane. Then, the FSST4 with a
short Gaussian window is applied, and the zoomed TF spectra
related to the targeted area are shown in Fig. 9(d). It can be
observed that the proposed method can track the frequency
variation precisely, while the common FSST4s cannot depict
this curve clearly. Our method [Fig. 9(d)] can provide the
clearest frequency decreasing than other FSST4s can provide,
which means our method has an obvious advantage over other
methods in characterizing the layer thickness variation. Fur-
thermore, the TF spectrum provided by the proposed method
shows an apparent decreasing frequency [Fig. 9(d)] which
indicates the layer thickness was thickening with depth. The
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Fig. 9. Enlarged TF spectra for the real seismic signal for oilfield. (a) FSST4
with a long Gaussian window (o = 0.015). (b) FSST4 with a middle Gaussian
window (o = 0.010). (c¢) FSST4 with a small Gaussian window (o = 0.005).
(d) Proposed method. (e) Corresponding velocity log near for the focused
well.

velocity log for well A shows the layer is thickening near the
target area [between 1292 and 1327 ms in Fig. 9(e)], which
verifies the decreasing frequency in the TF spectrum provided
by the proposed method.

C. HST-Induced Seismic Signal

HST is one of the fastest ways to travel in China. The
moving HST will cause the media around the high-speed rail
(HSR) to vibrate. The vibrations and seismic waves near the
HSR are usually regarded as noise and avoided. In recent
years, seismic waves generated by HSTs have received
widespread attention and have been used for near-surface
structural detection [62], [63], [64], [65], [66], [67], [68], [69],
[70], [71]. Here, we used one geophone near Xi’an—-Baoji
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HSR to receive the seismic signal caused by one HST we
focused on, and the positions of the geophone and HSR are
shown in Fig. 10. Xi’an Railway Bureau of China, which
is the administrative department of this HSR, provided some
information about this HST. The operating speed of this HST
is 242 km/h (67.22 m/s), and the coach number and length are
8 and 25 m.

According to the recorded HST passing time, we cut the
seismic signal induced by this HST and show its waveform and
amplitude spectrum in Fig. 11(a) and (b). It can be observed
that the spectrum differs from the common exploration signal’s
amplitude spectrum, which has a continuous and broadband
characteristic. The spectrum in Fig. 11(b) also implies that this
signal can be treated as an MCS. Therefore, the FSSTN can
be utilized to extract this signal’s TF characteristics. We use
FSST4 with three different length windows and show parts
of TF spectra in Fig. 12(a)—(c), respectively. The FSST4 with
a long window [Fig. 12(a)] can provide a TF spectrum with
a very highly concentrated TF spectrum. Seven main compo-
nents (from C1 to C7) can be observed in Fig. 12(a). However,
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Fig. 12. TF spectra of one HST-induced signal. (a) FSST4 with a long

Gaussian window (o = 0.20). (b) FSST4 with a middle Gaussian window
(o = 0.125). (c) FSST4 with a middle Gaussian window (o = 0.05). (d)
Proposed method.

the frequency’s variation with time is smoothed in Fig. 12(a).
That is to say, long window FSST4 has a low time resolution.
On the contrary, the FSST4s with a middle and short window
[Fig. 12(b) and (c)] have a good time resolution but suffer from
interference between the neighboring components. Therefore,
seven components cannot be fully observed in Fig. 12(b)
and (c), which means the FSST4 with a short window does
not have enough frequency resolution to distinguish seven
components.

The proposed method can cascade a long window FSST4
and some short window FSST4s, which can obtain a better
balance between time resolution and frequency resolution. The
TF spectrum provided by the proposed method is shown in
Fig. 12(d). Seven components can be easily observed. Fur-
thermore, for each component’s TF spectrum, the frequency’s
variation with time can be characterized precisely. To further
show the TF feature of each component, the TF spectra of
component C3 are zoomed and shown in Fig. 13. Only the
proposed method can provide a concentrated TF spectrum
with high time resolution [Fig. 13(d)]. Although FSST4 with
a middle Gaussian window [Fig. 13(b)] and a small Gaussian
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window [Fig. 13(c)] can show periodic characteristics of the
frequency, the proposed method [Fig. 13(d)] could provide a
very concentrated TF spectrum that can be used to recover
the periodic characteristic clearly. Furthermore, the frequency
variation with time in Fig. 13(d) is periodic, and seven cycles
are 2.62 s. Therefore, one cycle time is about 0.374 s.

Compared with the fixed-point seismic source used in
traditional seismic exploration, the running HST is a complex
moving seismic source. When the HST passes one point in
the railway, the load function for this point is one periodic
function with eight cycles because the HST we focused on
has eight coaches with the same structures [68]. Therefore,
it would stimulate a periodic signal with a 0.372-s cycle
predicted by the ratio between coach length (25 m) and HST
speed (67.22 m/s). The cycle time of the proposed method’s TF
spectra [Fig. 13(d)] is almost equal to the periodicity caused by
the HST. Therefore, our method can provide a high-precision
TF spectrum which can reflect the detailed frequency variation
with time.

IV. CONCLUSION

To obtain the TF spectrum with better time resolution and
frequency resolution simultaneously, this study proposes a cas-
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caded high-order SST. The proposed transform first uses one
high-order FSST with a long window to decompose a signal
into several components. Then, the short window high-order
FSST applies to each component to obtain a TF representation
with high-frequency resolution. The high-order FSST of each
component is summed to generate a TF representation with
high precision. One synthetic MCS data example has shown
the proposed transform’s ability to track small frequency
fluctuation with time compared with the commonly used high-
order FSST. The field data example about layer thickness
variation characterization shows that the proposed transform
can characterize the tiny frequency variation, which can be
used to reflect the layer thickness variation. Finally, the real
HST-induced seismic signal data example demonstrates the
proposed method’s advantages in reflecting the cyclic fluctua-
tion caused by the HST with the same coach structure.

TF analysis has been widely used in seismic data pro-
cessing and interpretation. Although only two applications
have been shown, the proposed method may have potential
in low-frequency shadow detection, tiny geologic structure
identification, and random noise attenuation. However, the
computational cost of the proposed method is higher than the
commonly used high-order FSST because multiple high-order
FSSTs are involved. Furthermore, like other SSTs, the pro-
posed method works well for a MCS, but it cannot deal with
the signal whose components intersect each other in the TF
plane because each component cannot be easily separated by
the long window TF method.
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