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ABSTRACT

Seismic data reconstruction has become a central focus in
seismic data processing, addressing challenges posed by sparse
sampling due to physical and budgetary constraints. The advent
of 5D acquisition methodologies marks a significant advance-
ment in the quality and completeness of seismic data sets. Most
traditional 5D reconstruction methods commonly use the fast
Fourier transform (FFT), requiring regular grids and preliminary
4D binning before 5D interpolation. Discrete Fourier transform
and nonequidistant FFT can honor the original irregular coordi-
nates. However, when using exact locations, these methods be-
come computationally expensive. We introduce an unsupervised
deep-learning methodology to learn a continuous function across
the sampling points in seismic data, facilitating reconstruction on

regular and irregular grids. The network comprises a multilayer
perceptron with linear layers and element-wise periodic activation
functions. It excels at mapping the input coordinates to the cor-
responding seismic data amplitudes without relying on external
training sets. The network’s intrinsic low-frequency bias is crucial
in prioritizing acquiring self-similar features over high-frequency
and incoherent ones during training. This characteristic mitigates
incoherent noise in seismic data, such as random and erratic
components. To assess the robustness of the unsupervised
reconstruction technique, we conduct comprehensive evaluations
using synthetic data examples sampled regularly and irregularly,
as well as field-data examples with and without binning. The
findings demonstrate the efficacy of our deep-learning framework
in achieving resilient and accurate seismic data reconstruction
across diverse sampling scenarios.

INTRODUCTION

Due to physical and budgetary constraints, seismic data are often
irregularly sampled along spatial coordinates, requiring a multidi-
mensional reconstruction process during processing. Over the past
two decades, various practical algorithms have been proposed to
address this challenge.
Prediction error filters, as introduced by Spitz (1991), Porsani

(1999), and Naghizadeh and Sacchi (2009), offer a method to in-
terpolate aliased seismic traces. In addition, transform-based meth-
ods, notably the Fourier transform (Sacchi and Ulrych, 1995, 1996;
Sacchi et al., 1998; Zwartjes and Gisolf, 2007; Li et al., 2012; Chiu,
2014; Mosher et al., 2017), are widely used in the industry, particu-
larly in 5D seismic data reconstruction (Liu and Sacchi, 2004; Trad,
2009; Jin, 2010). Other predetermined transforms such as the
Radon transform (Bardan, 1987; Kabir and Verschuur, 1995; Wang
et al., 2010), wavelet transform (Wang and Li, 1994), and curvelet

transform (Herrmann and Hennenfent, 2008; Hennenfent et al., 2010)
can also be used for interpolating missing traces. Dictionary learning
has been introduced and shows promise in 5D reconstruction (Wang
et al., 2021) to enhance the adaptability of the transform to the data
being processed.
Another category of traditional approaches is based on rank reduc-

tion theory, assuming that complete data are low-rank, with missing
traces and noise leading to higher rank (Ely et al., 2013). Rank re-
duction methods operate on matrices (Trickett et al., 2010; Oropeza
and Sacchi, 2011; Gao et al., 2013a; Kumar et al., 2015; Sternfels
et al., 2015; Chen et al., 2016) and tensors (Kreimer and Sacchi,
2012; Kreimer et al., 2013; Ely et al., 2015; Gao et al., 2015,
2016; Carozzi and Sacchi, 2019; Popa et al., 2021; Cavalcante
and Porsani, 2022; Liu et al., 2022). The final category within tradi-
tional approaches encompasses wave-front-attribute-based methods
(Baykulov and Gajewski, 2009; Hoecht et al., 2009; Xie and
Gajewski, 2016, 2017). These methods are data-driven and leverage
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information from physical quantities, such as the angle of emergence
and wave-front attributes, rather than relying solely on mathematical
transforms.
In recent years, deep-learning algorithms have emerged as a prom-

ising avenue for seismic data interpolation. These algorithms fall into
two categories: supervised (Oliveira et al., 2018; Wang et al., 2019;
Qian et al., 2021) and unsupervised (Park et al., 2020; Yuan et al.,
2021). Although supervised methods require extensive external train-
ing data sets, unsupervised methods eliminate this need but demand
more computational time. Based on conventional neural networks,
both categories are restricted to 2D or 3D data reconstruction due
to the computational costs associated with high-dimensional
networks.
A significant limitation shared by traditional reconstruction

methods using the Fourier transform, specifically the fast Fourier
transform (FFT), and deep-learning methods using convolutional
neural networks (CNNs) is their reliance on seismic data deployed
on regular grids. Given the irregular sampling of seismic data along
spatial dimensions, a prerequisite for reconstruction is binning data
into regularly sampled spatial dimensions. This process typically
involves storing and representing data as regular matrices or tensors,
a step in which the transition from the off-the-grid to the on-the-grid
data will inevitably introduce artifacts. Moreover, the bin size be-
comes an additional parameter that must balance computational
complexity with precision. Notably, this binning process can com-
promise the continuity of the seismic wavefield, leading to a loss
of fidelity in the reconstructed data. Addressing this issue is crucial for
improving the accuracy and reliability of seismic data reconstruction
methods, particularly as we advance toward handling more complex
and higher-dimensional data sets.
The discrete Fourier transform (Duijndam et al., 1999; Xu et al.,

2005) has been applied to develop reconstruction methods that can
directly handle irregularly sampled seismic data, enabling a more
accurate and faithful representation of the underlying wavefield.
Another approach involves using the FFT coupled with intermedi-
ate interpolation methods to reconstruct seismic data accurately,
preserving the exact spatial locations. Noteworthy methods include
non-equispaced FFT (Duijndam and Schonewille, 1999; Keiner
et al., 2009; Jin, 2010; López et al., 2016) and extended projection
onto convex set (EPOCS) (Jiang et al., 2017). However, these tech-
niques entail significant computational and memory resources, ren-
dering them less practical for handling the complexity of 5D seismic
interpolation. In contrast, whether deep learning can enhance inter-
polation performance by dealing with irregular coordinates remains
an intriguing area of exploration.
Recently, implicit neural representation (INR) has emerged as a

promising signal processing framework characterized by a multi-
layer perceptron (MLP) that incorporates linear layers and
element-wise nonlinear activation functions. INR learns a continu-
ous function over a set of points, making it well suited for handling
irregularly sampled signals such as high-dimensional seismic data
(Liu et al., 2024). Unlike CNNs, INRs are free of locality biases,
contributing to enhanced performance. Recent successes of the INR
span applications similar to surface representation (Sitzmann et al.,
2020), volume rendering (Martin-Brualla et al., 2021; Mildenhall
et al., 2021), and generative modeling (Chan et al., 2021). They
demonstrate that an INR can be interpreted as a structured signal
representation dictionary (Yüce et al., 2022), wherein the nonlinear
activation function dictates the atoms of the dictionary. For exam-

ple, the sine activation creates a pseudo-Fourier transform represen-
tation of the seismic signal that is sparsely concentrated across
several frequency spectra (Yüce et al., 2022).
This paper proposes a robust, unsupervised framework consisting

of an MLP that combines linear layers and an element-wise sinus-
oidal activation function to reconstruct multidimensional seismic
data. The proposed framework can reconstruct regularly binned and
unbinned seismic data with original irregular spatial coordinates. In
the proposed network, the training input consists of each data point’s
5D coordinates (one temporal coordinate and four spatial coordi-
nates). In contrast, the training target is the amplitude at the corre-
sponding coordinate. Specifically, the proposed method learns a
continuous mapping from the seismic data’s spatial and temporal co-
ordinates to the seismic data’s amplitude. Subsequently, the trained
model can predict the seismic data at the desired regular coordinates.
The proposed method can effectively attenuate random and erratic
noise during training when combined with a modified weight initial-
ization function, robust loss function, and early stopping. Synthetic
and field data examples demonstrate that the proposed algorithm can
reconstruct 5D seismic data on regular and irregular grids.

THEORY

Implicit neural representation

The objective of the INR is to encode a continuous target signal d
using a neural network fθ , parameterized by a set of weights θ. This
network represents the mapping between input coordinates c and
signal values dc. The encoding process involves minimizing a dis-
tortion measure, such as the mean-squared error, through the gradient
descent during training. The continuous nature of INR proves
particularly advantageous when handling irregularly sampled signals.
However, a significant challenge for INRs is effectively recon-

structing the high-frequency details in most multimedia signals.
INR and classical neural network architectures such as CNNs dem-
onstrate a well-documented spectral bias toward lower frequencies
(Rahaman et al., 2019; Xu, 2020; Huh et al., 2021), traditionally
limiting their use in implicit representation tasks. Recent efforts have
introduced various solutions to mitigate this spectral bias. For exam-
ple, Tancik et al. (2020) propose incorporating a Fourier mapping
layer before the MLP, whereas Sitzmann et al. (2020) suggest using
an MLP with sinusoidal activations. Both approaches aim to bias the
networks toward higher frequencies. In this study, we adopt a
network similar to the one proposed by Sitzmann et al. (2020), using
the sinusoidal activation function to synergize with the MLP.
The architecture of the INR with a sinusoidal activation function

can be decomposed as follows:

fθðcÞ ¼ WðLÞzðL−1Þ þ bðLÞ; (1)

where

�
zð0Þ ¼ sinðω0ðWð0Þcþ bð0ÞÞÞ

zðlÞ ¼ sinðWðlÞzðl−1Þ þ bðlÞÞ; l ¼ 1; : : : ; L − 1
: (2)

Here, c denotes the input coordinate to the first layer zð0Þ, which is
followed by multiple layers of an MLP, represented as zðlÞ. Each
layer is characterized by its respective weights WðlÞ and biases
bðlÞ. A sinusoidal activation function is applied element-wise at
each layer l ¼ 0; : : : ; L − 1. The constant ω0 is used for parameter
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rescaling at the initial stage. A larger ω0 biases the network toward
higher frequencies, thus mitigating the low-frequency spectral bias
observed in traditional neural networks.

INR for seismic data interpolation

In the context of seismic data, INR performs a mapping from the
coordinate systems to the signal value space. For example, in the 2D
case, the function is represented as fðt; xÞ ¼ d, where t is the time, x
is the offset, and d corresponds to the signal value at that specific
coordinate. In the 3D case, the equation becomes fðt; hx; hyÞ ¼ d,
with hx and hy representing the two horizontal spatial dimensions.
This formulation can extend to a 5D case with different coordinates
as well. For instance, supposing that the four spatial dimensions
(common midpoint inline/crossline, offset, and azimuth) are de-
noted as mx;my; h, and az, the function becomes fðt; mx;my;
h; azÞ ¼ d. A simplified illustration of the network architecture
is shown in Figure 1. The network itself is straightforward, com-
prising an input layer representing the coordinates of the seismic
data and an output layer corresponding to the response amplitude
of the seismic data. At its core, the network features a fully
connected MLP augmented with sinusoidal activation functions.
The uniqueness of the INR interpolation method lies in its depar-

ture from conventional supervised training methods that depend on
extensive external data sets for training, which are often challenging
to acquire for real seismic data. INR efficiently achieves data train-
ing by parameterizing seismic signals using only
a single data set. Furthermore, compared with
traditional methods, our INR method can work
directly on data sets with irregular sampling grids
without binning, avoiding introducing artifacts
caused by the binning process.
Figure 2 shows two different sampling meth-

ods along the spatial dimension: uniform sam-
pling with regular and random sampling with
irregular intervals. In the first case, we use the
network to minimize the cost function

min
θ

XN
i¼1

ρðfθðci1Þ − dci
1
Þ; (3)

where ci1 represents the coordinate of ith ob-
served data points, with a total of N points for
training. These coordinates are generated by a
sampling operator S that extracts a subset of the
coordinate vectors from the uniform sampling set
C1 by SC1 ¼ fci1gNi¼1. The distortion measure ρ
represents a general loss function, such as l1,
l2, and the Huber loss. The Huber loss is a
piece-wise function that combines elements of
the l1 and l2 loss functions. It behaves like the
l2 loss for small differences (less than a specified
threshold δ) and like the l1 loss for larger
differences. Mathematically, the Huber loss is
defined as

ρHða; δÞ ¼
�

1
2
a2 for jaj ≤ δ

δ · ðjaj − 1
2
δÞ otherwise

;

(4)

Figure 2. Two sampling methods on a spatial dimension, the gray
circle indicates the data point. (a) Uniform sampling with regular
intervals and (b) random sampling with irregular intervals.

Figure 3. The 2D synthetic example on a regular grid. (a) The original data, (b) noisy
decimated data with missing traces, (c) reconstructed result (S/N = 17.47 dB), and (d) er-
rors between (a and c).

Figure 1. INR interpolation network with MLP and a sin activation
function.
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Figure 4. The 2D synthetic example on an irregular
grid. (a) The original data, (b) noisy undersampled
data on an irregular grid, (c) reconstructed result on
the same regular grid as (a) (S/N = 17.51 dB), and
(d) errors between (a and c).

Figure 5. The 2D synthetic example generated
from the Marmousi model. (a) The original data,
(b) decimated data with 50% of the trace randomly
removed, (c) reconstructed result (S/N = 20.96 dB),
and (d) errors between (a and c).

4 Li et al.



where a is the error term (e.g., the difference between the predicted
value and the true value), and δ is the threshold that determines the
point at which the loss function transitions from quadratic to linear.
We use δ ¼ 0.1 in the Huber loss function in our examples. This
loss function is less sensitive to outliers than l2 loss and is often
used to reconstruct seismic data contaminated by erratic noise
(Carozzi and Sacchi, 2019). After training, dc1 ¼ fθðc1Þ represents
the final interpolated data at any missing positions.
In the second case, we aim to minimize the loss function

min
θ

XN
i¼1

ρðfθðci2Þ − dci
2
Þ; (5)

where ci2 ∈ C2 and C2 is the off-the-grid coordinate set in Figure 2b.
Unlike the situation with C1, there is no need for a sampling oper-
ator S to ensure SC2 ¼ fci2gNi¼1 because each point in ci2 directly
corresponds to the available data dci

2
. After training, we can produce

the seismic data at any desired coordinate, including uniform grids
in Figure 2a with fθðc1Þ.
Yüce et al. (2022) prove that the frequency support of the

reconstruction fθðcÞ is entirely controlled by the frequency support
from the initialization of the first layer. In our case, this is controlled
by ω0. Using a small value of ω0 will limit the reconstruction by miss-
ing many high-frequency features. Higher initialization fundamental
frequencies have been proven to lead to faster convergence
(Sitzmann et al., 2020; Tancik et al., 2020). However, initializing the
frequencies above an appropriate level may pro-
duce aliasing artifacts (Barron et al., 2021). Choos-
ing ω0 ¼ 30 rad=s, as suggested by Sitzmann
et al. (2020), provides a balance, allowing the sat-
isfactory reconstruction of critical features while
avoiding aliasing effects. In our case, with incom-
plete seismic data contaminated with pronounced
high-frequency noise, we aim to represent the
underlying signals accurately while excluding
the noise. This necessitates a trade-off in choosing
ω0 that should be large enough to represent the sig-
nals effectively yet not so large as to incorporate
excessive noise. This approach aligns with tradi-
tional reconstruction methods based on the Fourier
transform with a band-pass filter.
Yüce et al. (2022) also indicate that the multi-

layer structure of INRs imposes a particular low-
rank structure over the coefficients, similar to the
sparsity assumption in classical dictionaries
(Tošić and Frossard, 2011). The network tends
to suppress the learning of noise in the early
stages. Prolonged training risks overfitting to
the noise; however, low-rank regularization en-
sures that the network does not learn the noisy
data in their original form. A similar observation
is mentioned in Xu and Jiao (2023). Therefore,
with a small ω0, a robust loss function, and an
early stop, our network not only reconstructs
the missing data but also attenuates noise in
the data simultaneously. Further exploration into
the optimal selection of ω0, choice of a robust
loss function, and determination of the ideal
early stopping point will be addressed in the
Discussion section.

EXAMPLES

2D examples

Simple 2D example

We first test a simple 2D synthetic data example, as shown in
Figure 3a. We begin by randomly removing half of the traces
and then adding some random and erratic noise to the data. Figure 3b
shows the resulting noisy data. We then use our proposed method
with a regular grid to reconstruct the data, as shown in Figure 3c.
Figure 3d shows the differences between the original clean data and
the reconstructed result.
To further investigate the adaptability of our method, we extend

our evaluation to an irregular grid configuration, as shown in Fig-
ure 4b. In this case, instead of reconstructing the missing traces, we
leverage the precise coordinates of the traces for network training.
The well-trained model is then applied to predict the reconstructed
data on the desired regular grid, which is subsequently visualized on
the regular grid, mirroring the configuration of Figure 4a. The re-
constructed data set is shown in Figure 4c, demonstrating the meth-
od’s versatility in handling irregularities in the data distribution.

Marmousi 2D example

Our method is capable of interpolating complex data as well. We
demonstrate its capability with a 2D synthetic data example derived

Figure 6. The FK panel of the Marmousi data example. (a) The original data, (b) deci-
mated data with 50% of the trace removed regularly, (c) reconstructed data, and (d) errors
between (a and c).
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from the Marmousi earth model. Figure 5a presents a single-shot
gather from the Marmousi data set, whereas Figure 5b shows the
same data with 50% of the traces randomly removed. Our method’s
interpolated result with the irregular coordinates is presented in
Figure 5c, along with the associated signal-to-noise ratio (S/N)
value. Figure 5d shows the errors between the interpolated results
and the original data. Figure 6 shows the corresponding frequency-
wavenumber (FK) panel.

5D examples

In this section, we thoroughly test our robust method with experi-
ments on three types of 5D data sets: synthetic 5D examples on a
regular grid, a binned real 5D data example, and an authentic 5D
data set with irregular coordinates devoid of binning. To streamline
the training process for all 5D data examples, we systematically
divide each data set into smaller patches measuring 64×1, ensuring
a 50% overlap for comprehensive coverage. Throughout the train-
ing phase, we maintain a batch size of 1024. We use the Adam
optimizer with a fixed learning rate of 1e−5 to ensure stable
convergence during optimization. To avoid overfitting, we imple-
ment an l1 loss function. For all the 5D examples, we use
ω0 ¼ 10 rads=s.
In addition to evaluating our proposed method, we conduct a com-

parative analysis with the widely used conventional 5D reconstruction
method, projection onto convex sets (POCS) (Abma and Kabir, 2006;
Gao et al., 2013b). We use POCS with a linear threshold schedule for
all instances and iterate it 100 times. This comparative assessment
aims to provide a meaningful benchmark and insight into the relative
performance of our proposed robust method against a well-established
approach in the field.

Synthetic 5D examples on a regular grid

We generate a spatial data volume with the dimensions
30 × 30 × 12 × 8, comprising 301 time samples at a sampling rate
of 4 ms. This volume represents the seismic traces, with the first two
spatial dimensions denoting the common midpoint x (CMPx) and
the common midpoint y (CMPy). The third and fourth dimensions
represent the offset and azimuth, respectively. The volume contains
three parabolic events. To simulate realistic conditions, we intro-
duce random and erratic noise to the data and subsequently ran-
domly remove 90% of the traces. The synthetic data are then
used to train our proposed network, and the training process con-
cludes after 10 epochs. In Figure 7a, we present the data for azimuth
bins 1–4 with fixed offset and CMPy. Figure 7b shows the deci-
mated data with random and erratic noise. The lack of remaining
traces presents a significant challenge for successful reconstruction.
Figure 7c shows the reconstructed result using the POCS method, a
conventional approach for 5D reconstruction. Due to strong noise
and the absence of 90% of the traces, POCS failed to reconstruct
this data set, resulting in an S/N of −3.1 dB compared with the
original data in Figure 7a. Finally, Figure 7e shows the recon-
structed result obtained using our robust INR method. Our method
surpasses the POCS approach not only in reconstructing continuous
events but also in attenuating noise. The S/N of the reconstructed
data improved to 13.95 dB. This example shows the robust capabil-
ity of the proposed method in accurately characterizing the continu-
ous seismic wavefield. By comparing costs, we observe that the
POCS method required 42 s to reconstruct the data set using MAT-
LAB. In contrast, the proposed robust INR method, executed on a
consumer-grade graphics card boasting 7680 CUDA cores and
12 GB of RAM, completes one epoch in 15 s, totaling 2.5 min
for data set reconstruction. A direct cost comparison between these
two methods is inappropriate because POCS uses CPU, whereas the
proposed method uses GPU. However, it still indicates that the cost
difference between the two methods is insignificant. More impor-
tantly, the proposed method significantly outperforms other deep-
learning methods in handling high-dimensional data. For instance,

Figure 7. The synthetic 5D example consists of random and erratic
noise with missing 90% traces. (a) The original data, (b) decimated
data with random and erratic noise, (c) POCS reconstruction (S/N
=−3.1 dB), (d) errors between (a and c), (e) robust INR reconstruction
(S/N = 13.95 dB), and (f) errors between (a and e).
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CNN-based methods typically demand several hours to train one
epoch on a 5D data set. Our approach effectively reduces the prob-
lem to 1D by training the network on continuous points leveraging
the MLP. The input is comprised of points with five features,
whereas the output consists of points with just one feature.

Binned real 5D example

We continue our evaluation and apply the proposed robust INR
method to a binned real 5D data set. This data set features spatial
dimensions of 30 × 30 × 7 × 6, incorporating 351 time samples at a
4 ms sampling rate. Experimental settings, as in the previous sce-
nario, are used. The network concludes training after 50 epochs.
The consistent parameters alleviate the burdensome process of
parameter selection, further demonstrating the robustness of our
method. In Figure 8a, we present the data corresponding to azimuth
bins 1–4 with a fixed offset and CMPy. These gathers are selected to
compare performance across large gaps. The reconstructed results
achieved by the POCS and robust INR methods are presented in
Figure 8b and 8c, respectively. Although both methods accomplish
reconstruction over the large gaps, our method demonstrates a sub-
stantial denoising improvement. Figure 8d shows the errors be-
tween the original data and the reconstructed
result using the proposed method, explicitly fo-
cusing on the existing traces in the original data
to highlight the successful reconstruction of valu-
able signals with only residual noise remaining.
Moving to Figure 9a, we show the data for

CMPx numbers 1, 3, 5, and 7 at the same offset
and azimuth bin. Subsequently, Figure 9b and
9c shows the reconstructed outcomes by the POCS
and robust INRmethods, respectively. Our method
outperforms POCS, particularly in reconstructing
clean and continuous events more effectively. Fur-
thermore, Figure 9d presents the errors between
the original data and the reconstructed result using
our proposed method. The absence of signal
differences, with only the noise being revealed,
suggests that our method successfully recovers
potential events, maintaining the same structure
as POCS.
When we compare synthetic and real data ex-

amples, we conclude that our robust INR method
demonstrates efficacy in handling 5D seismic
data with regular binning. To summarize, when
contrasted with the POCS method, our approach
not only successfully captures all the events that
POCS captured but also effectively attenuates a
significant amount of noise, as indicated by Fig-
ures 8d and 9d. Furthermore, the events our pro-
posed method captures exhibit more consistent
amplitudes, highlighting another advantage of
our approach in enhancing the quality of 5D seis-
mic data reconstruction.

Real 5D example on an irregular grid

In this example, we apply our proposed method
to reconstruct real 5D seismic data directly using
the original irregular coordinates. The acquisition

geometry of the survey is shown in Figure 10, where the sources are
represented in red and the receivers in blue. The data set includes
446,487 traces. We compute the four spatial coordinates (CMPx,
CMPy, offset, and azimuth) for each trace based on the source
and receiver coordinates using the following equations:

CMPx ¼ Sxþ Rx
2

CMPy ¼ Syþ Ry
2

hx ¼ Sx − Rx

hy ¼ Sy − Ry

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2 þ hy2

q

az ¼ 180

π
· atan2ðhx; hyÞ: (6)

Here, ðSx; SyÞ and ðRx; RyÞ denote the coordinates of the source
and receivers, respectively, h represents the offset, and az is the azi-
muth. For this example, we apply a robust INR directly to the data

Figure 8. Binned 5D field data example with fixed offset and CMPy. (a) The original
data, (b) POCS reconstruction, (c) robust INR reconstruction, and (d) the difference
between (a and c).
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with irregular spatial coordinates and then use the
trained model to predict the data on regularly
binned coordinates. For regular binning, we de-
fined the following geometry:

• Δx ¼ 50 m, with 20 midpoints in the
inline direction.

• Δy ¼ 50 m, with 280 midpoints in the
crossline direction.

• Δh ¼ 1000 m, resulting in a total of 13
offset sectors.

• Δϕ ¼ 45°, leading to a total of eight
azimuth sectors.

Figure 11 shows the results of the CMPx sec-
tion with a fixed offset but varying azimuth de-
grees. For better visualization, the stacked result
for this CMPx section is also shown in Figure 12,
where the data are stacked along all offset and
azimuth dimensions. The stacked section for
the original binned data set contains no missing
traces, making it an ideal reference for compar-
ing the interpolated data with the original. In the
binned section, we can observe that the weak sig-
nals are clearer and more continuous (as indi-
cated by the red rectangles) in the INR results.
Furthermore, the average frequency spectrum
for the stacked CMPx section is presented in Fig-
ure 13. From the average spectrum, it is evident
that both methods of interpolation yield peak
frequencies at the exact locations of the original
data, indicating the accuracy of the interpolated
results.

DISCUSSION

Optimal ω0, loss function, and early
stopping criteria

As mentioned previously, to enhance the robustness of our
method toward undersampled data with noise, it’s crucial to care-
fully select an optimal value for ω0, use a robust loss function, and
determine the appropriate early stopping point. We will investigate
the specifics of these selections in the following explanation. Fig-
ure 14a and 14b shows the S/N of the reconstructed result for the
examples in Figure 3b with varying values of ω0 and loss functions,
respectively. Figure 14c shows the change of the loss energy (nor-
malized for better comparison) with different loss functions. In Fig-
ure 14a, we observe that a larger value of ω0 facilitates faster
network convergence with l2 norm loss function, reaching the peak
S/N value in fewer epochs. However, this increase in ω0 may also
result in the inadvertent learning of noise, potentially reducing the
peak S/N value. When ω0 is too small (e.g., 5 rad/s), the network
fails to reconstruct the desired signal. For this example, using ω0

values between 7–15 rad/s yields the best results. The network rap-
idly assimilates the signal during the initial stages and then slowly
begins to integrate the noise as the training progresses. However, it
does not thoroughly learn all the noise in the original noisy data
when converging. These observations align with the characteristics
of the network mentioned previously.

Figure 10. Survey acquisition geometry. The sources are plotted in
red, and the receivers are plotted in blue.

Figure 9. Binned 5D field data example with fixed offset and Azimuth. (a) The original
data, (b) POCS reconstruction, (c) robust INR reconstruction, and (d) the difference
between (a and c).
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Analysis of Figure 14b reveals that incorporating a Huber loss
function (a smoothed l1 loss) can significantly enhance denoising
performance on a noisy data set but with a trade-off of slower con-
vergence rates. In contrast, the l1 norm loss function may not yield
as high a peak S/N as the Huber loss function and
also has the slowest convergence rate among the
three considered. Notably, the l1 norm loss func-
tion demonstrates remarkable robustness against
erratic noise, characterized by the slowest decline
in S/N postpeak attainment.
Figure 14c shows the loss evolution across the

epochs for each loss function. This visualization
effectively illustrates a distinct turning point in
the loss reduction rate for each function. Specifi-
cally, the turning points occur approximately at
900 epochs for the l2 norm loss function, 2200
epochs for the Huber loss function, and 3100
epochs for the l1 norm loss function. Remarkably,
these turning points align precisely with the

respective peak S/N values for each loss function, indicating a prac-
tical criterion for early termination based on loss function behavior.
In conclusion, when dealing with noisy data sets exhibiting a clear

turning point in the loss function graph, using the Huber loss function

Figure 11. The CMPx section of the reconstructed field seismic data with a fixed offset but different azimuth sectors. (a) The original data,
(b) POCS, and (c) robust INR with the original irregular coordinates.

Figure 12. Stacked CMPx section of the reconstructed field data. (a) The original data,
(b) POCS, and (c) robust INR with the original irregular coordinates.
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is advisable for interpolating seismic data. However, in scenarios
wherein the turning point is unclear, such as with real-world data
characterized by indistinct signal-to-noise differentiation, opting for
the l1 norm loss function with extended training epochs proves more
effective for reconstructing incomplete noisy data.

Optimal ω0 with various missing data ratios and noise
levels

The optimal value of ω0 also varies with different data sets, pre-
dominantly influenced by the noise level and the percentage of
missing data. As shown in Figure 15a, depicting the peak S/N
change for the data set shown in Figure 14 across various missing
data rates, it’s evident that the optimal ω0 decreases as more traces
are removed. This trend aligns with findings in Li et al. (2023), sug-
gesting that sparser sampling necessitates smoother fitting, which
logically demands a smaller ω0. Specifically, our method exhibits
robustness even when 80% of the traces are absent, as shown in
Figure 16, where the interpolated result using only 20% irregularly
sampled traces is presented.
Figure 15b shows the variation in the peak S/N for an input data set

across different noise levels. In this scenario, we aim to assess how
the optimal value ofω0 changes with varying noise levels. Hence, we
use fully sampled data to evaluate the denoising efficacy of the pro-
posed method. Across data sets with differing noise levels, using a
smaller ω0 consistently yields more robust results against the noise in
the reconstructed data. In this instance, using ω0 ¼ 5 rad=s consis-
tently yields optimal denoising performance. Figure 17 presents the

Figure 15. Optimal ω0 for data with different percentages of miss-
ing traces and different noise levels. (a) The peak S/N for data with
different percentages of missing traces, and (b) the peak S/N for
input data with different noise levels.

Figure 13. Average frequency spectrum for the stacked CMPx section.

Figure 14. The proposed methods’ behavior with different ω0 and
loss functions. (a) S/N with different ω0, (b) S/N with different loss
functions, and (c) the change of loss valuewith different loss functions.
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Figure 17. The 2D synthetic example with noise.
(a) The original fully sampled data, (b) noisy fully
sampled data with the input S/N equal to –5 dB,
(c) denoised result (S/N = 9.3 dB), and (d) errors
between (a and c).

Figure 16. The 2D synthetic example on an irregu-
lar grid. (a) The original regularly sampled data,
(b) undersampled data with only 20% of the irregu-
larly sampled traces, (c) reconstructed result on the
same regular grid as (a) (S/N = 30.83 dB), and
(d) errors between (a and c).
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denoising performance of our method for noisy data with an input
S/N of −5 dB. Although the method may falter in achieving satis-
factory denoising outcomes under extremely high noise levels (such
as−10 dB), it consistently yields commendable results across various
scenarios. Notably, the denoising efficacy primarily hinges on the
inherent properties of the network itself. We suggest that integrating
additional strategies, such as incorporating a regularization term,
holds promise in further enhancing the denoising capabilities of
our method.
Hence, achieving the optimal ω0 requires considering the input da-

ta’s missing rate and noise level; for instance, setting ω0 ¼ 5 rad=s
results in optimal denoising performance when dealing with fully
sampled data. However, as depicted in Figure 14a, when the data
set contains noise and missing traces, using ω0 ¼ 5 rad=s fails to
reconstruct the data adequately.

Limitation in the 5D case

For the 5D examples, we recognize that traditional signal process-
ing methods similar to POCS yield results that better preserve the
data’s characteristics compared with our proposed method. In other
words, the proposed technique tends to produce overly smooth re-
sults. This phenomenon is similar to the CRS-based imaging and
reconstruction (Baykulov and Gajewski, 2009; Hoecht et al., 2009),
wherein results can appear excessively smooth, giving the impression
of being numerically generated. Our proposed method encounters a
similar issue, which is not uncommon. Several articles have indicated
the difficulty of neural networks in modeling high-frequency data.
However, as demonstrated in the previous 2D Marmousi example,
by using the larger ω0, the network can learn the high-frequency
components as well. We believe that similar outcomes can be
achieved with 5D data through more careful parameter tuning, espe-
cially concerning the learning rate, and by increasing the number of
learning epochs. However, achieving this is challenging with our cur-
rent GPU resources. This characteristic does not invalidate our re-
sults; in contrast, it motivates us to pursue further research aimed
at developing networks capable of competing with established and
robust reconstruction methods based on signal processing in terms
of speed and accuracy.

CONCLUSION

We present an unsupervised framework for interpolating 5D seis-
mic data across regular and irregular grids. Our framework lever-
ages an INR network comprising an MLP with linear layers and
element-wise sinusoidal activation functions. Three different loss
functions are discussed to enhance the reconstruction of seismic
data. By using a small value for ω0 and implementing an early stop-
ping criterion, our method not only interpolates 5D seismic data but
also effectively suppresses random and erratic noise during the
training phase. Comprehensive evaluations conducted on synthetic
and real 5D data examples validate the robustness and accuracy of
our approach. Specifically, when we adopt binned data, our pro-
posed method yields results comparable to those achieved by POCS
but with significantly reduced noise levels. Moreover, using the
original irregular spatial coordinates in our approach enables the
recovery of faint events that may have been distorted during the
binning process, further highlighting the adaptability and superior
performance in capturing the details of seismic wavefields.
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