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ABSTRACT

Seismic data denoising is a critical component of seismic data
processing, yet effectively removing erratic noise, characterized
by its non-Gaussian distribution and high amplitude, remains a
substantial challenge for conventional methods and deep-learning
(DL) algorithms. Supervised learning frameworks typically out-
perform others, but they require pairs of noisy data sets alongside
corresponding clean ground truth, which is impractical for real-
world seismic data sets. In contrast, unsupervised learning (UL)
methods, which do not rely on ground truth during training, often
fall short in performance when compared with their supervised or
traditional denoising counterparts. Moreover, current unsuper-
vised DL methods fail to address the specific challenges posed
by erratic seismic noise adequately. This paper introduces a novel
zero-shot unsupervised DL framework designed specifically to
mitigate random and erratic noise, with a particular emphasis
on blended noise. Drawing inspiration from Noise2Noise

(N2N) and data augmentation principles, we develop a robust
self-supervised denoising network called robust Noiser2Noiser.
Our approach eliminates the need for paired noisy and clean data
sets as required by supervised methods or paired noisy data sets
as in N2N. Instead, our framework relies solely on the original
noisy seismic data set. Our methodology generates two indepen-
dent recorrupted data sets from the original noisy data set, using
one as the input and the other as the training target. Subsequently,
we use a DL-based denoiser, denoising convolutional neural
network, for training purposes. To address various types of ran-
dom and erratic noise, the original noisy data set is recorrupted
with the same noise type. Detailed explanations for generating
training input and target data for blended data are provided.
We apply our network to synthetic and real marine data examples,
demonstrating significantly improved noise attenuation perfor-
mance compared with traditional denoising methods and state-
of-the-art UL Codes are available on https://github.com/Ji-
seismic/N2N_deblending.

INTRODUCTION

Seismic data denoising is important in seismic data processing.
The seismic noise encompasses coherent and incoherent compo-
nents, as elucidated by Abma and Claerbout (1995). Ground roll,
as discussed by Deighan and Watts (1997), represents the prevalent
form of coherent noise in land seismic data. In contrast, incoherent
noise is divided into two distinct categories: broadband frequency,
low-amplitude random noise and high-amplitude erratic noise. In
previous decades, various methods have emerged to combat random
noise, primarily relying on sparse transformation techniques. These
methods transform seismic data into sparse domains, from which
signals and noise are subsequently separated. Popular sparse trans-
form domains in geophysics encompass the Radon transform
(Ibrahim and Sacchi, 2014; Latif and Mousa, 2016), Fourier trans-

form (Hennenfent and Herrmann, 2008; Yu et al., 2015), wavelet
transform (Cao and Chen, 2005; Mousavi and Langston, 2016), and
curvelet transform (Hennenfent and Herrmann, 2006; Górszczyk
et al., 2014). An alternative set of methods hinges on rank reduction,
positing that seismic data exhibit low-rank characteristics in the fre-
quency domain. These approaches, such as multichannel signal
spectrum analysis (Oropeza and Sacchi, 2011; Siahsar et al.,
2017) and singular value decomposition (Lari et al., 2019), seek
to restore signals by reconstructing low-rank matrices.
However, erratic noise attenuation poses a more formidable chal-

lenge compared with random noise mitigation. Robust methodolo-
gies have sought to replace the l2-norm cost function found in
nonrobust methods with robust M estimators (Maronna, 1976).
Notably, Guitton and Symes (2003) substitute the conventional
l2 norm with the Huber norm, enhancing seismic data handling
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in the presence of outliers. Similar efforts by Trickett et al. (2012)
incorporate rank reduction filters to mitigate erratic noise. Li
and Sacchi (2021) introduce a sparse and robust Radon transform,
estimated via matching pursuit, to address simultaneous source
separation problems.
In recent years, deep-learning (DL) techniques have gained sub-

stantial traction in geophysics, influencing seismic inversion (Li
et al., 2019; Zheng et al., 2019), random noise attenuation (Liu
et al., 2018), deblending (Richardson and Feller, 2019; Wang
and Hu, 2021), fault detection (Helbing and Ritter, 2018), and seis-
mic interpolation (Oliveira et al., 2018; Wang et al., 2019; Kaur
et al., 2021). DL techniques broadly fall into two categories: super-
vised learning (SL) and unsupervised learning (UL). SL requires
vast quantities of paired clean and noisy data sets for training, a
challenge given the scarcity of such paired data in the real seismic
domain. Although methods exist that only require synthetic data for
training (Othman et al., 2021), their performance across various
types of noise in real data remains unclear. Traditional methods
have been used to generate denoised data for training labels, but
their imperfections and substantial computational demands are
limiting factors.
To address these challenges, various unsupervised and self-super-

vised methods have emerged to tackle different forms of seismic
noise. Liu et al. (2020) harness the generator convolutional neural
network (CNN) to combat random noise in prestack seismic data
and ground roll (Liu et al., 2023). Sun et al. (2022a) use self-super-
vised transfer learning to mitigate random noise in seismic data.
Qian et al. (2022) introduce a deep convolutional autoencoder with
the Welsch function to attenuate random and erratic noise. Saad
et al. (2021) propose a UL approach based on deep image prior
(DIP) (Ulyanov et al., 2018) to eliminate random noise in 3D seis-
mic data. In contrast, Sun et al. (2022b) adopt DL methods to at-
tenuate blended noise in the shot domain. Wang et al. (2023a) use
unsupervised double-deep neural networks to iteratively remove
blended noise. In addition, Wang et al. (2022) use a self-supervised
blind-trace network to address the deblending problem. Self-SL,
a vital branch of UL, generates labels directly from the training
data set, with Noise2Noise (N2N) (Lehtinen et al., 2018) being
a prominent strategy in this domain. Wang et al. (2023b) propose
a self-supervised learning method based on the N2N strategy to re-
duce random noise. However, for self-supervised methods using the
N2N principle, gathering pairs of training data sets with the same
data but differing independent noise poses a challenge comparable
with collecting pairs of clean and noisy data. As a result, most UL
methods are tailored exclusively for random noise, which does not
pose a significant challenge in seismic data processing. Moreover,
the performance of UL methods remains suboptimal compared with
their supervised counterparts.
In this paper, we introduce a pioneering self-supervised frame-

work designed to address random and erratic noise, with a specific
focus on mitigating blended noise in simultaneous source acquis-
ition data. Drawing inspiration from N2N (Lehtinen et al., 2018)
and data augmentation methods, we present a robust variant called
robust Noiser2Noiser, which is capable of attenuating random and
erratic noise. Our framework operates in a zero-shot self-supervised
manner, eliminating the need for data other than the original noisy
data set. This approach involves independently recorrupting the
original noisy data to generate two independent recorrupted data
sets, using one as the training input and the other as the training

label. Subsequently, we use a commonly used denoising CNN
(DnCNN) (Zhang et al., 2017) and train it with the input and label
pairs. The specific recorruption method depends on the type of
noise being addressed; for random noise, we recorrupt the data with
additional random noise to create input-label pairs, whereas for
erratic noise, we apply the same type of erratic noise and use a
robust l1-norm loss function instead of the conventional mean-
square error (MSE) loss function. To further improve the useful sig-
nal extraction ability from similar pairs, particularly in data plagued
by erratic noise, we use a symmetric loss function (Chen and He,
2021), integrating it with the residual learning strategy proposed by
He et al. (2016).
Our method is applied to synthetic and real data examples featur-

ing random noise and erratic noise. Notably, we use the proposed
technique to remove blended noise stemming from simultaneous
source acquisition, an erratic noise subtype.

THEORY

Unsupervised and self-supervised denoising networks

Traditionally, the training of denoising networks has heavily
relied on accessing paired data sets containing noisy and clean data
for SL. However, a significant breakthrough in this paradigm
emerged with the introduction of N2N by Lehtinen et al. (2018).
This pioneering work demonstrated that denoising networks trained
on noisy/noisy image pairs can generate results that are remarkably
close to those trained on noisy/clean data pairs from the same
data set.
To elaborate, consider a scenario in which we have a pair of

noisy data samples,

y1 ¼ xþ e1;

y2 ¼ xþ e2; (1)

where e1 and e2 represent independent noise sources. A network Fϕ

is then trained to minimize the Noise2Clean MSE loss function:

min EfkFϕðy1Þ − xk22g
¼ min EfkFϕðy1Þk22 − 2xTFϕðy1Þg; (2)

where E is an expectation operator used to calculate the average loss
over all possible pairs of data. This function aims to reduce the dif-
ference between the network’s output when applied to y1 and the
clean signal x. In addition, N2N uses a similar approach but with a
different loss function:

min EfkFϕðy1Þ − y2k22g
¼ min EfkFϕðy1Þ − x − e2k22g
¼ min EfkFϕðy1Þk22 − 2xTFϕðy1Þ − 2eT2Fϕðy1Þg: (3)

In this case, we aim to minimize the difference between the net-
work’s output for y1 and y2, or equivalently, the difference between
the network’s output for y1 and the clean signal x corrupted by e2.
Notably, when e1 and e2 are independent of each other, the term

2eT2Fϕðy1Þ simplifies to zero. Consequently, the MSE loss functions
for Noise2Clean and N2N yield equivalent results. This observation
suggests that training a denoising network on noisy data samples
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with the same clean signals can yield outcomes similar to training
on clean/noisy pairs.
Nevertheless, it is essential to acknowledge that acquiring noisy

data set pairs that precisely align with the clean data is often as chal-
lenging as obtaining corresponding noisy/clean pairs. As a result,
recent research has focused on training DL models using noisy data
sets exclusively, thus obviating the need for pairwise correspon-
dence between noisy and noisy data samples. This transition marks
a significant step forward in developing unsupervised and self-SL
methods for noise removal in various applications, such as seismic
data processing.
For noise removal without the need for paired noisy and clean

data, several innovative self-supervised techniques have emerged.
These approaches redefine the conventional SL paradigm and have
shown promising results in various applications, such as image
denoising. Here, we discuss some notable methodologies that have
propelled the field forward.

1) Blind spot prediction techniques: Noise2Void (Krull et al.,
2019) and Noise2Self (Batson and Royer, 2019) are pioneer-
ing methods that use blind spot prediction. They predict the
value of a pixel by considering its surrounding context. These
techniques operate under the assumption that the corruption is
zero mean and independent across pixels. The promising
results from these methods have paved the way for more
advanced self-supervised approaches.

2) Self2Self for single-image denoising: Building upon the con-
cept of blind spot prediction, Self2Self (Quan et al., 2020) has
made substantial strides in achieving single-image denoising
results that rival those of traditional fully trained methods. By
leveraging the surrounding pixel information, Self2Self has
demonstrated remarkable denoising capabilities without
needing clean data pairs.

3) Recorruption-based frameworks: Another class of self-super-
vised techniques involves recorrupting noisy images to create
even noisier versions. These augmented data sets are then
used to train networks to map the noisier images to the origi-
nal noisy data. Noteworthy methods in this category include
Noiser2Noise (Moran et al., 2020), Noisy-as-Clean (Xu et al.,
2020), and Recorrupted-to-Recorrupted (Pang et al., 2021).
These techniques show that increased noise levels in training
data can improve the network’s ability to denoise.

4) Subsampling: Recent developments such as Neighbor2-
Neighbor (Huang et al., 2021) showcase innovative ways
to leverage a single noisy data set. By subsampling the data
set, they generate a pair of noisy data sets for training, exploit-
ing data augmentation to enhance denoising performance. In
addition, Lequyer et al. (2022) and Mansour and Heckel
(2023) harness similar ideas, optimizing the training process
for greater efficiency.

5) DIP: DIP (Ulyanov et al., 2018) is another influential self-su-
pervised technique that capitalizes on the ability of CNNs to
fit natural images more rapidly compared with noise. By us-
ing early stopping during training, DIP can effectively recon-
struct a clean image before introducing noise.

These self-supervised methodologies collectively represent a
paradigm shift in noise removal, eliminating the need for extensive
paired data sets and offering versatile solutions for various applica-
tions, such as seismic data processing and image denoising. As

research in this domain continues to evolve, these techniques hold
significant promise for addressing complex noise-related chal-
lenges.

Robust Noiser2Noiser

Let us consider x as our representation of clean data. The noisy
data y can be expressed as

y ¼ xþ n; (4)

where n can be either random noise or erratic noise.
As previously discussed, denoising networks perform similarly

when trained on noisy/noisy image pairs compared with noisy/clean
data pairs from the same data set. The question is how to construct a
pair of noisy data sets y1 and y2 with independent noise from a
single noisy data set y ¼ xþ n.
Methods such as Noiser2Noise (Moran et al., 2020) and Noisy-

as-Clean (Xu et al., 2020) use a noisier image as input, where they
synthesize noise z and then train the denoising network on the data
set pair (yþ αz; yÞ. Meanwhile, Pang et al. (2021) train the denois-
ing model on the pair (yþ αz; y − z=α), which results in a loss func-
tion more statistically connected to the supervised approach. We
have tested both augmentation methods and found the results are
very close. For our robust Noiser2Noiser seismic denoising net-
work, we adopt the same method as described by Pang et al. (2021).
In all our tests, we use α ¼ 0.5, which means the training pair we
use is (yþ 0.5 × z; y − 2 × z). In addition, we use a symmetric loss
function (Chen and He, 2021) to train a Siamese network. The
Siamese network is especially useful when labeled training data
are scarce or expensive, as they can learn to compare inputs directly
without relying on explicit class labels.
The loss function is then defined as

min
1

2
EfkFϕðy1Þ − y2k22g þ

1

2
EfkFϕðy2Þ − y1k22g: (5)

Our experiments have demonstrated that using the residual learning
technique, as introduced by Zhang et al. (2017), leads to notable
enhancements in denoising performance. With residual learning, the
network is trained to optimize against the noise component rather
than the raw image data. Consequently, this approach transforms the
final loss function into

min
1

2
Efky1−Fϕðy1Þ−y2k22gþ

1

2
Efky2−Fϕðy2Þ−y1k22g:

(6)

In the case of a data set with erratic noise, we replace the l2 norm
with the l1 norm to make the loss function more robust:

min
1

2
Efky1−Fϕðy1Þ−y2k11gþ

1

2
Efky2−Fϕðy2Þ−y1k11g:

(7)

Now that we have our training input, target pairs, and corresponding
loss functions, the next step is to select the network architecture.
The proposed robust self-supervised denoising framework is
compatible with various network architectures, such as ResNet
(He et al., 2016), DnCNN (Zhang et al., 2017), and U-net
(Ronneberger et al., 2015). We opt for DnCNN in this study due
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to its straightforward architecture and effective residual learning
strategy. It has successfully addressed numerous seismic denoising
challenges in recent years, such as random noise (Zhang et al.,
2018), ground roll (Li et al., 2018), and blended noise (Matharu
et al., 2020).
The architecture of our proposed network is shown in Figure 1.

We generate the training input and target pairs from the original

noisy data. Each training pair consists of y1 ¼ yþ αz and
y2 ¼ y − z=α. Here, z represents the same type of noise as in the
data set but is independent of the noise present in the original data.
Our approach uses a Siamese network to train paired recorrupted
noisy data. This network architecture is comprised of two identical
DnCNN networks with shared parameters and weights. The outputs
from these subnetworks are then leveraged to compute the final loss
function. We use the l2 norm to attenuate random noise and the l1

norm for erratic noise. The training input and target should be nor-
malized to ensure that the training process is more stable.

Noise simulation

When dealing with random noise, generating an independent set
of synthetic random noise is a straightforward process. We use
additive white Gaussian noise, denoted as n, with a distribution
n ∼ Nð0; σ2IÞ. This noise is zero mean and independent of the
data y. However, generating erratic noise is a more intricate task.
To illustrate this, let us consider a specific example: blended noise.
Blended acquisition, or simultaneous source acquisition, is an
acquisition method used to reduce costs. It involves firing multiple
seismic sources at short random time intervals (Beasley et al., 1998;
Berkhout, 2008). Blended acquisition can be viewed as a time-shift-
ing operation applied to data from individual sources, mathemati-
cally represented as

b ¼ BD; (8)

where B represents the blending operator, D is
the desired data cube obtained through a conven-
tional seismic survey, and b represents the
blended data. The adjoint operator B� corre-
sponds to the pseudodeblending operation:

~D ¼ B�b: (9)

The resulting ~D represents pseudodeblended
data, which contains interference from other
sources and is considered as blended noise. This
blended noise is coherent in the common-shot
gather but appears as incoherent erratic noise in
other types of gathers, such as common-receiver
gathers, common-offset gathers, or common-
midpoint gathers.
Suppose we have a pseudodeblended data set

~D1. To generate synthetic blended noise for train-
ing purposes, we can apply the blending and de-
blending operators with random time shifts to
~D1, resulting in another pseudodeblended data
set ~D2 that contains the same coherent seismic
signal as ~D1 but with additional erratic blended
noise. Subsequently, the synthetic blended noise
is calculated as BN ¼ ~D2 − ~D1.
For training, we use ~D1 þ αBN as the input

and ~D1 − BN=α as the target.

EXAMPLES

In this section, we apply our proposed denois-
ing framework to synthetic and real marine data

Figure 1. The architecture of the proposed robust self-supervised
learning network. The training pair y1 ¼ yþ αz and
y2 ¼ y − z=α is used to train a Siamese network. After training,
the original noisy data y are used to estimate the clean data FϕðyÞ.

Figure 3. Recorrupted data pair with more independent random noise: (a) input and
(b) label.

Figure 2. The 2D synthetic example with random noise: (a) clean data and (b) noisy data
with random noise.
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examples. The network implementation is performed using PyTorch
(Paszke et al., 2019), and all tests are conducted on a consumer-
grade graphics processing unit with 4352 CUDA cores and
8 GB RAM.
We begin by applying our method to two 2D synthetic examples:

a simple one and a shot gather generated using the finite-difference
method. Subsequently, we tackle the challenging deblending prob-
lem using the robust Noiser2Noiser framework. Our evaluation
extends to three deblending scenarios:

1) Blended data created using the finite-dif-
ference method.

2) Real-world blended marine data collected
through the simultaneous source acquisi-
tion method.

3) Real marine data that we numerically
blended with much shorter time intervals
and more blended noise.

This comprehensive evaluation demonstrates
the versatility and effectiveness of our approach
across a range of data sets and scenarios.
To assess the performance of our denoising

method on synthetic data examples and manually
blended real data examples, we use the signal-to-
noise ratio (S/N) as a metric for comparison. The
S/N is defined as follows:

S=N ¼ 10 log
kdck22

kdc − drk22
; (10)

where dc represents the original clean data and dr is the denoised
output. For the real simultaneous source seismic data, where we
lack a ground truth for direct S/N computation, we visualize the
errors between the original data and the deblended result to illustrate
any signal leakage.

Figure 4. Denoising result of synthetic data with random noise. Noise2Void and robust Noiser2Noiser work for random noise. (a) Denoised
via Neighbor2Neighbor (S/N = 10.2 dB), (b) errors between (a) and clean data, (c) denoised via Noise2Void (S/N = 18.3 dB), (d) errors
between (c) and clean data, (e) denoised via robust Noiser2Noiser network (S/N = 18.1 dB), and (f) errors between (e) and clean data.

Figure 5. The 2D synthetic example with blended noise: (a) clean data and (b) noisy
data with blended noise.
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Synthetic examples denoising

Simple 2D example

We explore the proposed framework by conducting tests on sim-
ple 2D synthetic data. These tests encompass scenarios involving
random noise and erratic noise. To evaluate the denoising perfor-
mance, we compare our approach with two other zero-shot unsu-
pervised frameworks, namely Noise2Void (Krull et al., 2019) and
Neighbor2Neighbor (Huang et al., 2021).

Our initial test focuses on random noise, for which we use the l2

norm during training. Figure 2a and 2b shows the clean and noisy
data, respectively. This 2D data section contains three linear events
and operates at a sampling rate of 4 ms. To mitigate the impact of
random noise, we manually recorrupt the noisy data set by intro-
ducing additional random noise, thereby generating training input
and labels. Figure 3a and 3b shows the recorrupted training input
and labels, respectively. The denoising results of these three
methods are shown in Figure 4. In the case of random noise,

Neighbor2Neighbor exhibits the weakest denois-
ing performance, whereas Noise2Void and the
proposed robust denoising network deliver effec-
tive and comparable denoising results.
We then evaluate the robust Noiser2Noiser

denoising algorithm on erratic noise, specifically,
blended noise. Figure 5b shows the same 2D
synthetic data example but with blended noise
manually introduced. To effectively address
blended noise, we recorrupt the noisy data set, this
time incorporating blended noise. The blending is
performed with varying random time shifts. Fig-
ure 6 shows the generated training input and la-
bels. To account for blended noise, we opt for
the l1-norm loss function, known for its robust-
ness to erratic noise, to replace the l2 norm. This
choice holds for all three methods. The deblending

Figure 6. Recorrupted data pair with more independent blended noise: (a) input and
(b) label.

Figure 7. Denoising result of synthetic data with blended noise. Only the proposed robust Noiser2Noiser works for blended noise. (a) Denoised
via Neighbor2Neighbor (S/N = 7.1 dB), (b) errors between (a) and clean data, (c) denoised via Noise2Void (S/N = 7.4 dB), (d) errors between
(c) and clean data, (e) denoised via robust Noiser2Noiser (S/N = 22.1 dB), and (f) errors between (e) and clean data.
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outcomes from the three methods are visually shown in Figure 7, with
the results revealing that only the proposed robust Noiser2Noiser
denoising network effectively removes the blended noise.

2D finite-difference synthetic example

The previous example underscores the effectiveness of our pro-
posed robust Noiser2Noiser framework in handling random and
erratic noise scenarios. Consequently, in the subsequent tests, we
focus solely on evaluating the deblending performance of our
method across different data sets. Random noise attenuation, as
demonstrated, poses no significant challenge in the context of seis-
mic data denoising.
We now apply our robust Noiser2Noiser framework to a more

complex 2D synthetic seismic shot generated using the finite-dif-
ference method. This 2D synthetic shot gather exhibits greater
complexity compared with the previous example. As shown in
Figure 8a and 8b, we present the clean data and the shot gather
with blended noise, respectively. The S/N for the noisy shot gather
is measured at −1.21 dB. To create the necessary training input
and labels, we introduce random time shifts during the blending
process, yielding the reblended training input and labels shown in
Figure 8c and 8d.
Subsequently, Figure 8e and 8f shows the deblending results

alongside error comparisons with the original clean shot gather.
Notably, our approach leads to a remarkable improvement in the
S/N, from –1.21 dB to an impressive 21.2 dB.

Previously, we mentioned the effectiveness of using an l1-norm
loss function in conjunction with residual learning and a symmetrical
term to enhance the denoising performance of our algorithm. In this
subsection, we present the results of various tests conducted on this
data set to assess the performance of our proposed method using dif-
ferent loss functions. Figure 9a shows the S/N values obtained with
different data fitting methods. Notably, we observe that while the
l2-norm loss function is susceptible to erratic noise, the Huber norm
exhibits higher resilience, albeit failing after extended training. Con-
versely, the l1 norm demonstrates significant robustness to erratic
noise, achieving peak S/N and halting noise learning beyond a certain
point. These trends are further evident in the loss curves shown in
Figure 9b. The l2-norm loss function continues to learn all data, in-
cluding noise, until reaching zero loss, indicating overfitting. The
Huber loss function’s curve shows a slower decrease beyond a certain
point, whereas the curve for the l1 norm stabilizes after learning all
essential signals. Figure 9c shows the performance of our proposed
method using the l1 norm with and without a symmetrical term as
well as with and without residual learning. Notably, residual learning
is crucial for handling blended noise, as evidenced by the failure of
the network without it. In addition, incorporating a symmetrical term
significantly enhances denoising performance.

Deblending examples

The preceding two examples demonstrate the effectiveness of our
robust Noiser2Noiser framework in successfully mitigating erratic

Figure 8. The 2D finite-difference synthetic example with blended noise. (a) Clean data, (b) noise data with blended noise (S/N = –1.21 dB),
(c) recorrupted training input, (d) recorrupted training label, (e) deblended result by the robust Noiser2Noiser network (S/N = 21.2 dB), and
(f) errors between deblended results and clean data.
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noise. We now turn our attention to applying this methodology to
address the deblending problem.
In the context of blended data sets, which are typically 3D cubes

containing time samples, receivers, and shots as dimensions, we
observe that the blended noise in the common-shot domain is
coherent. However, this translates into incoherent erratic noise in
the common-receiver domain. Consequently, the deblending proc-
ess can be conceptualized as removing erratic noise across all
common-receiver gathers.
To tackle the task of removing blended noise, we have three main

approaches:

1) Training on whole data set (with patching): This method in-
volves training on the entire data set, which comprises numer-
ous shot gathers simultaneously. However, due to memory
constraints, we must partition the data into smaller patches.

2) Training on shot gathers individually (with patching): Here,
we train on each shot gather separately, breaking each into
smaller patches for training purposes.

3) Training on shot gathers individually (without patching):
In this approach, we train directly on each complete shot
gather.

In our specific scenario, we conducted experiments with a 3D
cube of dimensions 2000 × 350 × 350. When we divided the data
set into 32 × 32 patches with 50% overlap, training a single epoch
on the entire data set took approximately 2 h. However, a signifi-
cantly faster approach emerged when training on individual shot
gathers, with each shot gather divided into 32 × 32 patches. In this
case, it required only approximately 1.2 s per epoch, totaling
approximately 6 s for deblending one shot gather (equivalent to
approximately 5 epochs).
When opting to train on the entire shot gather as a whole, without

patching. It took approximately 0.4 s per epoch, with a total of 20 s
(equivalent to 50 epochs) for deblending one shot gather. Although
this method resulted in a longer training time compared with patch-
based training, the improvement in deblending performance justi-
fied the investment. A total of 20 s per shot was deemed acceptable
in exchange for superior results.
As a result, for all subsequent deblending experiments, we

adopted the approach of applying our algorithm to shot gathers indi-
vidually without patching. We initialized the weights using the
Kaiming initialization method (He et al., 2015), which is well suited
for rectified linear unit activation functions. This initialization
greatly accelerated the convergence of the training process. We used
a learning rate of 1e−3 and used the Adam optimizer.
Regarding the DnCNN architecture, it is common to use 17

layers. However, for our deblending problem, we found that reduc-
ing the number of layers to 10 still produced excellent deblending
results while significantly reducing computational costs.

Finite-difference deblending example

We initiate our exploration by first applying the Noiser2Noiser
network to a synthetic blended data set meticulously crafted using
the finite-difference method. This data set encompasses 350 shots
and receivers sampled at a rate of 4 ms. We set the blending factor to
three, signifying that each shot gather contains the source interfer-
ence from two other shots.
Figure 10a and 10b shows the pristine and noisy common-

receiver gathers. To train our network with utmost efficacy, we craft
corresponding recorrupted common-receiver gathers, as shown in
Figure 10c and 10d. Subsequently, Figure 10e and 10f unveils the
deblended common-receiver gather in tandem with the error relative
to its pristine counterpart.
We conducted statistical tests on the two noise sources to dem-

onstrate that the newly generated blended noise is uncorrelated with
the original noise. Figure 11a shows the blended noise extracted
from the original gather (Figure 10b). In Figure 11b, we present
the newly generated blended noise with different random time
shifts, which was then used to create the training pairs, as shown
in Figure 10c and 10d.
We calculated the correlation coefficient and covariance matrix

between these two noise sources. The correlation coefficient is
0.0018 and both off-diagonal values of the covariance matrix are
2.81 × 10−5. These values indicate that the newly generated blended

Figure 9. The proposed methods’ behavior with different loss func-
tions: (a) S/N curve for different data fit terms, (b) loss curve for
different data fit terms, and (c) S/N curve for l1-norm loss function
with and without symmetric term.
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noise is statistically uncorrelated with the original noise, aligning
well with the principles of the N2N theory.
We then iterate this denoising process across all common-

receiver gathers and present the conclusive deblended outcomes
for the common-shot gather in Figure 12.

Real simultaneous-source marine data set

To comprehensively evaluate the efficacy of
our robust Noiser2Noiser network in tackling
real-world challenges, we conducted further test-
ing using real data. We test our proposed method
rigorously using a real simultaneous source
marine data set, generously provided by PGS and
obtainable from the SEG website (SEG Wiki,
2018). This data set is a substantial 2768 × 256 ×
256 matrix, encompassing temporal, receiver,
and shot dimensions, sampled at a rate of 4 ms.
Figure 13 shows one of the common-receiver
gathers residing within this extensive data set.
Following our established experimental protocol,
we executed this data set’s reblending and pseu-
dodeblending procedures. The resulting training
input and target pair corresponding to Figure 13
are shown in Figure 14a and 14b, respectively.
Subsequently, Figure 14c and 14d visually rep-

resents the deblended outcome. It is important to note that, due
to the absence of ground truth for this data set, we present the de-
blended result and the difference relative to the original data. This
presentation helps demonstrate the effectiveness of noise attenua-
tion and any potential signal leakage.
We systematically applied this process across the entire data

set, diligently removing blended noise from all common-receiver

Figure 10. Common-receiver gather of finite-difference blended data. (a) Clean data, (b) noise data with blended noise (S/N = –0.84 dB),
(c) recorrupted training input, (d) recorrupted training label, (e) deblended result by the robust Noiser2Noiser network (S/N = 20.51 dB), and
(f) errors between deblended results and clean data.

Figure 11. Blended noise in the common-shot gather. (a) Original blended noise in
Figure 10b (the difference between Figure 10a and 10b) and (b) regenerated blended
noise used to create Figure 10c and 10d.

Self-supervised robust denoising 9



gathers. The conclusive deblended result, achieved through our
methodology, is shown in Figure 15.

Manually blended real marine data example

The blended noise in the previous real data example is far from
the signal without much overlap between them. To further test the

deblending performance of our algorithm, we run our algorithm on
a manually blended real data example, which has much shorter time
intervals and more overlap between the signal and blended noise.
This specific data set, a 2D prestack marine example, is publicly
accessible for download from the SEG website (SEG Wiki, 2021).
In this data set, we manually fused four consecutive shots,
giving rise to coherent source interference that appears in the

common-shot gather.
In Figure 16a, we present an unaltered

common-receiver gather for reference. In con-
trast, Figure 16b shows the same shot gather sub-
jected to controlled blending, resulting in an S/N
of approximately −1.23 dB. In line with our
previous experiments, we replicated the blending
process using the pseudodeblended data set,
introducing various time shifts. The resulting
reblended common-receiver gather, shown in
Figure 16c and 16d, serves as the training input
and the reference label for our model. The
deblended outcome is shown in Figure 16e.
We adopted a similar strategy and trained the

model on the entire data set to effectively miti-
gate all blended artifacts within the common-off-
set gather. Figure 17a and 17b provides a visual
comparison between the original common-shot
gather and the pseudodeblended counterpart.
Conversely, Figure 17c and 17d emphasizes
one of the final deblended common-shot gathers
alongside the associated error analysis.

DISCUSSION

Why Noiser2Noiser works well on
erratic noise

The proposed self-supervised learning net-
work can be used to attenuate random and erratic
noise. The first 2D synthetic example shows that
the network exhibits better denoising perfor-
mance with blended noise compared with ran-
dom noise. Unlike traditional methods that
often struggle to remove erratic noise (such as

blended noise) due to its high amplitude, the network is more sen-
sitive to the distribution of the noise rather than its amplitude alone.
The network learns to distinguish between the signal and noise by
understanding the differences between the training pairs. As dem-
onstrated by these examples, although random noise has a smaller
amplitude, it is pervasive. It corrupts all signals, making it noisier
for the network than blended noise, which, in contrast, does not
affect most parts of the signal. Therefore, it is easier to reconstruct
signals corrupted by blended noise than those corrupted by ran-
dom noise.
The original N2N paper (Lehtinen et al., 2018) demonstrated that

the N2N method can effectively handle outliers when using the l1

loss function. This capability relies on having pairs of training data
sets with the same signal but independently distributed noise. While
adding more synthetic noise to the data is the most straightforward
method to generate such pairs, it becomes challenging for real-
world images where the noise distribution is often unknown. Alter-
native methods such as Noise2Void and Neighbor2Neighbor, which

Figure 12. Common-shot gather of finite-difference blended data. All the source inter-
ference from the other shots is removed successfully. (a) Clean data, (b) pseudodeblended
data (S/N = –0.20 dB), (c) deblended result (S/N = 20.03 dB), and (d) errors between
deblended results and clean data.

Figure 13. One common-receiver gather from the real simultaneous
source acquisition data.
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do not require the generation of synthetic noise, have been proposed
to address this challenge. These methods are based on the N2N
theory but are not the same. For Neighbor2Neighbor, the ground
truths of two downsampled noisy images are not the same. The
Noise2Void uses the blind spot method instead of generating a pair
of data with the same type of noise. The efficacy of these methods
with erratic noise is not guaranteed. Most of the literature on these
methods focuses on Gaussian and Poisson noise, with limited ex-
ploration of erratic noise scenarios. In the original Noise2Void pa-
per, it is indeed mentioned that the method encountered challenges
with outliers, but the specific reasons for this were not extensively
elaborated in the paper. Most other methods do
not mention erratic noise at all. Some of these
methods probably work with the erratic noise
by modifying the algorithm. However, the objec-
tive of this paper is not to adapt existing methods.
Because we can generate independent blended
noise from the original data, we opt for the most
straightforward and theoretically aligned ap-
proach to remove the noise in our specific sce-
nario. This choice allows us to stay true to the
original N2N theory while effectively addressing
the challenges of blended noise in seismic data
processing.
In all of our examples, we consistently use

α ¼ 0.5, indicating that the training pairs that
we use are of the form (yþ 0.5 × z, y − 2 × z).
Consequently, the training target is always noisier
than the training input. However, using a noisier
training target is not a strict requirement. Due to
the symmetric nature of the loss function we use,
swapping the training input and target would yield
identical results. Moreover, our method has a high
tolerance for selecting α. Using α within a large
range does not significantly alter the results. As
shown in Figure 18, which illustrates the recon-
structed result for the data presented in Figure 8b
with different values of α, using α values between
10−1 and 101 demonstrates negligible variations in
performance. Even a broader range, such as 10−2

to 102, still yields acceptable results. In summary,
while we consistently use α ¼ 0.5 in our exam-
ples, the method remains robust to variations in
this parameter.

Proposed method versus traditional
methods

Compared with traditional seismic denoising
methods, particularly robust denoising methods
for erratic noise, the proposed method offers sev-
eral advantages. First, our method is fast and eas-
ier to implement. Traditional methods often rely
on linear assumptions, limiting their applicability
to linear data. This necessitates dividing data into
smaller windows, increasing denoising costs sig-
nificantly. In contrast, our method can operate
directly on the entire shot gather. Second, tradi-
tional robust denoising methods often sacrifice
weak events (those with amplitudes weaker than

noise in the transform domain) while attenuating erratic noise.
However, our method preserves these weak events unless directly
overlapped by strong erratic noise. Moreover, traditional methods
are highly sensitive to parameters such as the minimum rank value
in the rank reduction-based method or trade-off parameter λ in the
regularization term of loss functions for sparse transform methods.
Slight parameter adjustments can lead to significant result varia-
tions, posing challenges when processing real data in small win-
dows. In contrast, our method requires only one parameter α, and
we have demonstrated its robustness across a wide range of values,
minimizing the need for parameter optimization.

Figure 14. (a) Generated training input, (b) generated training input target, (c) deblended
result, and (d) difference between (c) and Figure 13.

Figure 15. Common-shot gather of the final deblended result. The source interference
from the other shot is separated successfully. (a) Original blended shot gather, (b) de-
blended shot gather, and (c) difference between (a and b).
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Limitations and future work

The finite-difference example shown in Fig-
ure 10 poses a significant challenge due to its cur-
vature and the complete distortion of weak signals
in the deep area. In this analysis, we compare our
proposed method with two others. The first
method is similar to ours but uses an l2 norm in-
stead of the more robust l1 norm. Although the l2

norm is less robust against erratic noise, it typically
results in signal reconstruction with less leakage
than the l1 norm. The second method is a tradi-
tional approach based on the robust Radon trans-
form (Ibrahim and Sacchi, 2014). This method
addresses the deblending problem by minimizing
an l1 − l1 loss function using a robust solver such
as iteratively reweighted least-squares (Chartrand
and Yin, 2008) and alternating direction method
of multipliers (Wen et al., 2016). For this method,
we partitioned the data into small overlapping win-
dows to adhere to the linear assumption of useful
signals. We also optimized the trade-off parameter
lambda for each window to balance deblending
and signal leakage. To evaluate the deblended re-
sult’s leakage, we present figures of the local sim-
ilarity (Chen and Fomel, 2015) in this context. The
local similarity measures the resemblance between
the denoised result and the residual between the
noise and denoised data, indicating signal leakage
and retrieving useful signals from the residuals.
The findings shown in Figure 19 reveal signifi-

cant insights. Although the l2 norm struggles to

Figure 16. Common-receiver gather of manually blended real marine data. (a) Clean data, (b) noise data with blended noise (S/N = –1.23 dB),
(c) recorrupted training input, (d) recorrupted training label, (e) deblended result by the robust Noiser2Noiser (S/N = 15.4 dB), and (f) errors
between deblended results and clean data.

Figure 17. Common-shot gather of manually blended real marine data. Most blended
noise is attenuated. (a) Clean data, (b) pseudodeblended data (S/N = –1.52 dB), (c) de-
blended result (S/N = 14.3 dB), and (d) errors between deblended results and clean data.
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robustly handle intense erratic noise, such as blended noise, evident
in the deblended result and the local similarity graph, traditional
methods such as the robust Radon transform are able to suppress
most blended noise. However, they also may introduce distortions
to the signal and generate undesired signals even in areas not di-
rectly affected by the noise. A notable advantage of the proposed
method is its ability to reconstruct signals unaffected by noise fully.
Nonetheless, in regions where strong blended noise obscures weak
signals, the deblended result may exhibit discontinuities within the
noisy areas.
Several potential solutions can be explored to address this limi-

tation. One approach involves integrating the proposed method with
traditional seismic data reconstruction techniques, leveraging the
physical properties of seismic events to reconstruct data in these
areas. Alternatively, introducing priors into the network could en-
hance the reconstruction results. These possibilities warrant further

investigation. Despite this limitation, our pro-
posed method still stands out for its speed, sim-
plicity, and robustness compared with traditional
seismic denoising methods. Its effectiveness in
handling erratic noise in seismic data makes it
a promising approach for various applications.

CONCLUSION

We introduce a novel zero-shot self-supervised
framework designed to mitigate random and
erratic noise effectively. In line with the founda-
tional concept of N2N, we aim to reduce the
dependency on clean training data. Our method
uses a pair of recorrupted data sets during the
training process, explaining how we synthesize
random and blended noise (a specific subtype
of erratic noise) for generating the training data.
To benchmark our approach, we compare it

with two other N2N alternatives, conducting
extensive evaluations on synthetic data. Sub-
sequently, we apply our proposed framework to
address the deblending challenge across synthetic
and real marine data examples. To eliminate
blended noise, we generate extra independent
blended noise by applying the blending and pseu-
dodeblending operators to the data set with differ-
ent random time shifts. Then, the newly generated
blended noise is used to construct a pair of train-
ing input and target. The trained model is finally
deployed to detect and remove blended noise from
the data set. These practical instances serve as
compelling demonstrations of the framework’s re-
markable deblending performance, effectively
eliminating blended noise without introducing
significant signal leakage.
Notably, our self-supervised method achieves

remarkable deblending results even without
clean training data, comparable to, or surpassing,
conventional algorithms and SL-based deblend-
ing methods. As we continue our research, we
aim to extend the applicability of this framework
to address various forms of erratic noise, present-
ing a promising avenue for future exploration.

Figure 18. The S/N of reconstructed results for data in Figure 8
with different values of α.

Figure 19. Comparison of the signal leakage for the example in Figure 10a with different
methods. (a) Deblended result by the proposed method (S/N = 20.51 dB), (b) residual be-
tween noise data in Figure 10 and denoised data (a), (c) local similarity between (a and b),
(d) deblended result by the proposed method with l2 norm (S/N = 4.31 dB), (e) residual
between noise data in Figure 10 and denoised data (d), (f) local similarity between (d and e),
(g) deblended result by the robust Radon method (S/N = 10.23 dB), (h) residual between
noise data in Figure 10 and denoised data, and (i) local similarity between (g and h).
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