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Zero-Shot Denoising for DAS-VSP Data Based on
Conditional Diffusion Probabilistic Models
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Abstract— Distributed acoustic sensing (DAS) systems offer
a promising framework for advanced subsurface imaging and
monitoring. Despite the great potential, the complex noise
characteristics inherent in seismic data, such as environmen-
tal, mechanical, and instrumental disturbances, pose significant
challenges to data fidelity and stability. Conventional noise
suppression methods cannot be adequately adapted to dynamic
seismic environments due to the need to design filters for different
conditions. To overcome these limitations, we introduce the
conditional denoising diffusion probabilistic model (C-DDPM),
which exhibits strong a priori extraction capabilities and can
better cope with seismic signal extraction under different noise
combinations. In addition, we incorporate an adaptive FK con-
ditioning approach into the diffusion process, allowing C-DDPM
to better learn the data distribution. We also use asymmetric
dilated convolution (ADConv) to effectively suppress noise. Our
approach is rigorously tested on both synthetic and real-world
seismic datasets, demonstrating satisfactory improvements in
noise reduction and signal clarity. Comparative analyses with
existing classical methods reveal that our framework not only
achieves a higher peak signal-to-noise ratio (PSNR) but also
reveals waveform details previously obscured by noise, outper-
forming existing methods in challenging geophysical scenarios.

Index Terms— Conditional denoising diffusion probability
model (C-DDPM), distributed acoustic sensing (DAS), generative
model, seismic denoising.

I. INTRODUCTION

DISTRIBUTED acoustic sensing (DAS) is an innovative
and promising technology for seismic signal acquisition

using optical fibers [1]. By injecting coherent light pulses
into an optical fiber, DAS detects backscattering caused by
impurities in the fiber. The amplitude and phase changes
of these reflected signals are measured by photodiodes to
acquire seismic data. This process effectively transforms the
optical fiber into a dense array of vibration sensors, allowing
real-time data collection over extensive areas with unprece-
dented spatial resolution. DAS offers significant advantages
in complex terrains, reducing the need for traditional seismic
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equipment [2], [3] and providing continuous monitoring of
subsurface phenomena. Its low maintenance requirements and
adaptability make DAS a promising replacement or comple-
mentary technology to existing seismic array systems [4], [5],
[6]. Currently, DAS has been successfully applied in various
fields, including signal acquisition in vertical seismic profiles
(VSPs) [7], reservoir characterization [8], [9], hydraulic frac-
ture monitoring [10], [11], [12], seismic detection [13], and
seismic monitoring [14].

Despite its advantages, DAS is highly susceptible to noise
interference from various sources. These include optical and
electronic noise in the sensing equipment, inconsistencies in
fiber quality and reflectivity, imperfections at the splices and
connectors, ambient noise conditions along the fiber path, and
inadequate coupling between the fiber and the ground [15].
As depicted in Fig. 1, such interference can significantly
degrade the quality of seismic data, making it difficult to
extract clean signals with a single denoising method [16],
[17], [18]. Given the vast amounts of data generated by DAS,
sophisticated denoising techniques are essential for meaningful
signal extraction, making it a critical area of research in
geophysical data processing.

Traditional methods possess unique advantages in removing
noise from DAS data, particularly by leveraging hand-crafted
prior knowledge behind noise generation mechanisms and
the characteristics of the signals, achieving refined denoising
effects and high-quality results. For example, Chen et al. [19]
proposed a method for coupled noise suppression by
constructing sparse dictionaries for both the signal and noise
using continuous wavelet transform and discrete cosine
transform, respectively. Lellouch et al. [20] applied median
and low-pass filters to clean DAS-VSP data from the Frontier
Observatory for Research in Geothermal Energy (FORGE),
addressing high-frequency, high-amplitude, and horizontal
noise. Chen et al. [21] introduced a comprehensive framework
for cleaning the FORGE DAS-VSP dataset, integrating
bandpass filters, structure-oriented median filters, and
FK-domain dip filters. However, they face several limitations.
First, designing filters requires a strong mathematics
background and specialized expertise, which can pose a
significant challenge, especially when complex mathematical
tools are needed to achieve optimal results. Furthermore,
selecting the appropriate parameters needs substantial prior
knowledge to accurately distinguish between seismic signals
and noise. These parameters are fixed and generally assumed
to apply to stationary signals. However, in the highly variable
environments of DAS systems, such conventional approaches
may be effective for specific noise types but often struggle
to manage the wide range of noise types simultaneously.
Therefore, there is an urgent need for more advanced, tailored
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Fig. 1. Segment of real DAS-VSP data contaminated by diverse noise types.
The red area indicates seismic signals, the blue areas represent coupled noise
caused by cable oscillations, the yellow areas denote common-mode noise
resulting from interrogator box vibrations or electromagnetic interference from
electronic devices, and the green area shows impulse noise caused by transient
faults in the measurement system or instability in optical pulses.

denoising techniques that can adapt to the complexities of
DAS systems and handle all noise types collectively.

Recently, deep learning has gained significant attention in
seismic signal processing for its efficiency in parallel com-
putation and strong data-driven pattern recognition abilities.
Supervised learning can effectively denoise seismic data by
learning complex noise patterns directly from training data
through end-to-end learning. This approach bypasses the intri-
cate explicit priori design of traditional methods, offering
a more flexible way to incorporate prior knowledge. As a
result, supervised learning is widely applied to various seismic
denoising tasks, including the removal of random noise [22],
linear noise [23], ground roll [24], scattering noise [25], and
multiples [26]. Other aspects include seismic signal interpo-
lation [27], automatic structural interpretation with realistic
folding and faulting features [28], and coherent wave field
analysis for large-scale data-driven training [29]. Although fast
and effective [30], [31], [32], supervised learning approaches
rely on a large number of noisy-clean data pairs, which
are unavailable for field data. Unsupervised deep learning
methods are capable of learning directly from noisy data
and can achieve satisfactory denoising results without clean
labels [33], [34], [35]. However, unsupervised methods carry
inherent limitations, including a heavy reliance on handcrafted
heuristics or traditional assumptions, sensitivity to noise or
hyperparameters, and limited generalizability to complex or
heterogeneous datasets.

While deep learning methods for seismic signal denoising
commonly focus on modeling the signal, we argue that the
noise component deserves greater attention. Our work explores
this under-emphasized noise perspective, seeking to develop
a denoising strategy that effectively removes complex noise
while preserving the integrity of the underlying signal. During
the acquisition of seismic signals by the DAS-VSP system,
when there is no seismic excitation, the DAS constantly
receives vibration signals from the environment, and these
noises are lower in intensity than the seismic signals. The
percentage of background noise is affected by the environment

of the acquisition site (e.g., traffic, industrial activity, cli-
mate change). Under certain environmental conditions, the
percentage of background noise may be higher, especially
if the source is sparse or the seismic wave travels a long
distance. Therefore, most of the data in the existing DAS-VSP
dataset are noise that does not contain seismic signals. These
abundant noise samples can be effectively leveraged to train
neural networks, potentially achieving supervised-like training
outcomes without explicit labels.

The denoising diffusion probabilistic model (DDPM) [36]
is currently an excellent deep generative model renowned for
its effectiveness in image synthesis and image editing and
has a very strong ability to learn the signal priors. Con-
ditional denoising diffusion probability models (C-DDPMs),
as explored by [37], extend DDPM by conditioning the dif-
fusion process on noisy data through training a conditional
denoiser. This allows for more targeted denoising, enabling
the model to better distinguish between noise and signals, and
also makes C-DDPM receive much attention in seismic signal-
processing work [38], [39]. Since it is free of modeling explicit
degradation, conditional diffusion models have broader appli-
cations in seismic processing, including the removal of ground
roll [40] and multiples [41], interpolation [42], and super-
resolution [43]. This flexibility makes it a potentially powerful
tool for complex denoising challenges in DAS-VSP data.

We propose to use C-DDPM to denoise DAS-VSP data. This
is done by training a denoiser obtained by adding synthetic
DAS-VSP data with real acquired noise as a training set
to recover the real DAS-VSP signal. To better adapt to the
nuances of seismic signal processing, we have made several
modifications to the original C-DDPM, including the noise
schedule, the diffusion process, and the network structure,
so that the diffusion model can satisfy the requirement of
applying the model trained on synthetic data to real data.
Experimental results show that the modified C-DDPM suc-
cessfully learns the key features of seismic signals and
effectively separates the noise. The field data further validate
the practicality and strong generalizability of our method. Our
contributions are as follows.

1) We treat the synthetic data with added noise as additional
a priori information and use conditional diffusion proba-
bilistic modeling to mitigate the generative bias inherent
in diffusion models. With this approach, we can capture
multimodal distributions in the high-dimensional space
of DAS-VSP data and effectively suppress noise from
various distributions.

2) We employ adaptive FK conditioning diffusion to incor-
porate the idea of filtering into the diffusion process.
It allows the condition to gradually guide the generation
direction of the model from low to high frequencies
as the diffusion process changes with the time step
t , thus maximizing the preservation of the DAS-VSP
data. We also replace the original linear noise table
with a cosine noise table. This can effectively control
the fluctuation of the peak signal-to-noise ratio (PSNR),
reduce the information loss, and ensure a more stable
quality of data denoising.

3) We introduce asymmetric dilated convolution (ADConv)
into the convolutional layer of the diffusion model U-Net
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network. ADConv is inspired by asymmetric convolution
and dilated convolution and combines the two by setting
special correlation distances to achieve more powerful
horizontal and vertical noise removal.

II. METHOD

A. Training Dataset Construction With Real Acquired DAS
Noise

Most deep learning methods for seismic signal denoising
tend to focus on the signal as the main prior, overlooking
the potential benefits of leveraging noise itself. In reality,
noise is not merely an obstacle to be removed but a widely
available resource that can significantly enhance denoising
performance. By reorienting our view to treat noise as an
integral component, we seek to remove its complex patterns
while preserving the core characteristics of the seismic signal.

In DAS-VSP data acquisition, background noise is con-
tinuously recorded even without active seismic sources. The
noise primarily originates from the perturbation of detecting
equipment and wellbore-coupled vibrations and can be broadly
categorized into the following three types based on their differ-
ent patterns. Vertical noise (the green area in Fig. 1) is mainly
impulse noise caused by transient faults in the measurement
system or instability in optical pulses. Horizontal noise (the
yellow areas in Fig. 1), which is mainly common-mode noise,
may originate from vibrations of the DAS interrogator box,
such as fan operation or electrical leakage of the interrogator
or nearby electronic components. These sources can induce
simultaneous vibration signals across all channels, resulting
in horizontal strip-like patterns. Fiber-coupled noise (the blue
areas in Fig. 1) manifests as spring-wave patterns and is caused
by oscillations of loosely coupled fibers bouncing against the
borehole wall. Although typically less intense than seismic
signals, this noise often dominates the dataset, especially when
seismic sources are sparse or wave propagation distances are
extended. As a result, vast portions of DAS-VSP recordings
are comprised solely of nonseismic noise. This abundance of
real-world noise becomes an invaluable training resource for
C-DDPM, which can exploit unlabeled noise data to learn
robust noise distributions.

By conditioning on noisy samples, the C-DDPM effectively
separates the signal from substantial noise content without
heavily relying on a large number of labeled datasets. The
diffusion process refines an understanding of diverse noise
profiles, while the conditional framework ensures that the
essential seismic features remain intact. Consequently, this
approach transforms noise from a hindrance into a driving
force: the more comprehensive and varied the noise dataset
is, the more adeptly the network learns to suppress it in new,
previously unseen data. This shift in perspective underscores
noise’s role beyond conventional “clutter,” demonstrating how
its rich variability and widespread availability can be harnessed
to achieve improved seismic signal denoising.

We propose to split the real DAS-VSP dataset into two parts,
that is, the part containing seismic signals and the part of pure
field noise. The noise properties of these two parts are the
same, differing only in whether they contain seismic signals
or not. As shown in Fig. 2, we take synthetic seismic signals
as x0 and add real noise to them as y, that is, the condition,

to form the training dataset. Once trained, the optimal network
θ∗ is directly used for field data denoising. Finally, we apply
the a priori information q(x0) and the network θ∗ learned
by the model directly to the denoising of DAS-VSP data
containing seismic signals, that is, we use the DAS-VSP data
containing seismic signals as y† to guide the model to generate
denoising results.

B. Conditional DDPM

C-DDPM can learn the prior distribution from the condition
and then decode it to generate images through a reverse
process. The forward and reverse processes are shown in
Fig. 2(a). The forward process of C-DDPM is a deterministic
Markov chain. Let the input be x0 ∼ q(x0). In the forward
process, predetermined Gaussian noise is gradually added to
x0 to perturb the data distribution, and the addition of noise
is constrained by the time step t , t = 0, . . . , T . Given x0 and
latent variables x1, . . . , xT from the same sample space, the
diffusion process can be defined as

q(x1:T |x0, y) =

T∏
t=1

q(xt |xt−1, y) (1)

where q(xt |xt−1, y) represents the mapping from step t − 1 to
step t in the forward process and xT ∼ N (0, I). That is, xt is
obtained by adding Gaussian noise to xt−1

q(xt |xt−1, y) = N
(

xt ;
√

1 − βt xt−1, βt I
)

(2)

where βt ∈ (0, 1) is a predefined variance schedule that
increases with time step t . Thus, we can get the forward
process xt directly from the x0 iteration

q(xt |x0, y) = N
(

xt ;

√
ᾱt x0,

(
1 − ᾱt

)
I
)

. (3)

A more explicit form is given by

xt =

√
ᾱt x0 +

√
1 − ᾱtϵ, ϵ ∼ N (0, I) (4)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs . At timestep t , xt

converges to a prior distribution, that is, a standard normal
distribution. Thus, the forward process is a diffusion process
that gradually converts a real-world image to a Gaussian noise
image.

The reverse process is also defined on a Markov chain,
which converts pure noise xT ∼ N (0, I) to the data distri-
bution x0 ∼ q(x0)

pθ (x0:T , y) = p(xT , y)

T∏
t=1

pθ (xt−1|xt , y) (5)

where pθ (xt−1|xt , y) is the Gaussian transition

pθ (xt−1|xt , y) = N (xt−1; µθ (xt , y, t), 6θ (xt , y, t)) (6)

that has learned the mean µθ (xt |t) and fixed variance
6θ (xt |t) = σt [37]

µθ (xt , t) =
1

√
αt

(
xt −

βt√
1 − ᾱt

ϵθ (xt , y, t)

)
. (7)

Then, the optimization function of the network is

L = Et,xt ,ϵt

[
∥ϵt − ϵθ (xt , y, t)∥2]. (8)
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Fig. 2. Overall flow of the proposed algorithm. (a) Training process. The basic C-DDPM is applied to the training of synthetic data. The dashed arrows
represent the forward process, while the solid arrows indicate the reverse process. Forward process is a predefined Gaussian transition q(xt |xt−1, y). In the
reverse process, the learned Gaussian transition pθ (xt−1|xt , y) utilizes y to guide the generation. (b) Denoising process. The trained model is directly applied
to the field data denoising. The use of AFKCDM directs the network to learn the field data from low to high frequencies through a low-pass filtering process
conditional on the time step t for y′, which is used to obtain better denoising results. And the orange arrows between (a) and (b) indicate that the optimal
network θ∗ trained by (a) is used directly for (b).

And we can gradually generate x̂0 during training by

x̂t−1 =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ (xt , y, t)

)
+ σt z (9)

which shows

x̂0 =

√
1
ᾱt

xt −

√
1 − ᾱt

ᾱt
ϵθ (xt , y, t). (10)

The training and sampling processes for the synthetic data
processing of our method are described in Algorithms 1 and 2.
We train the network θ using the label and the field data
as x0 and y. The trained network θ is used at each step
of the sampling process to predict the noise that should be
removed, and thus samples the denoised results after the whole
inverse process. The sampling process for real data processing
of our method is described in Algorithm 3. A more detailed
discussion is provided in Section II-C.

Algorithm 1 Training of Synthetic Data Processing

1 repeat
2 x0, y ∼ q(x0, y)

3 t ∼ Uni f orm({1, . . . , T })

4 ϵ ∼ N (0, I)
5 Take a gradient descent step on:

∇θ∥ϵ − ϵθ (
√

ᾱt x0 +

√
1 − ᾱtϵ, y, t)∥2

6 until converged

C. Adaptive FK Conditioning Diffusion Model

To improve the noise suppression performance of C-DDPM,
better capture the characteristics of seismic signals, and reduce
signal leakage, we introduce an adaptive FK conditioning
diffusion model (AFKCDM). This approach enhances the
conditioning mechanism of C-DDPM by leveraging the FK
domain properties of seismic signals, which are critical for
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Algorithm 2 Sampling of Synthetic Data Processing

1 xT ∼ N (0, I)
2 for t = T, . . . , 1 do
3 z ∼ N (0, I) if t > 1, else z = 0
4 Take a gradient descent step on:

∇θ∥ϵ − ϵθ (
√

ᾱt x0 +

√
1 − ᾱtϵ, y, t)∥2

5 x̂t−1 =
1

√
αt

(x̂t −
1−αt√

1−ᾱt

ϵθ (x̂t , y, t)) + σt z

6 until converged

Algorithm 3 Sampling of Real Data Processing

1 x†
T ∼ N (0, I)

2 for t = T, . . . , 1 do
3 z†

∼ N (0, I) if t > 1, else z†
= 0

4 Transform y† into the FK domain:

Y f = F
(
y†)

5 Apply timestep-dependent FK mask Mt :

Y′

f = Mt ⊙ Y f

6 Perform inverse Fourier transform to obtain the filtered
condition:

y′
= F−1(Y′

f

)
7 Take gradient descent step on:

∇θ∥ϵ − ϵθ

(√
ᾱt x†

0 +

√
1 − ᾱtϵ, y′, t

)
∥

2

8 Update x†
t−1 using the adaptive FK conditioning

condition:

x̂†
t−1 =

1
√

αt

(
x̂†

t −
1 − αt√
1 − ᾱt

ϵθ

(
x̂†

t , y′, t
))

+ σt z†

9 until converged

effective denoising in geophysical applications. AFKCDM
modifies the reverse diffusion process by incorporating adap-
tive constraints, thereby ensuring that the retained signal
components match the dominant seismic frequencies.

An illustration can be seen in Fig. 2(b). At each step t of the
reverse process, AFKCDM applies an adaptive FK condition-
ing transformation to y† and integrates this information into
the denoising procedure. The process begins by transforming
y† into the FK domain using a Fourier transform

Y f = F
(
y†) (11)

where F(·) denotes the Fourier transform and Y f represents
the FK spectrum of y†.

A timestep-dependent FK mask Mt is then applied to Y f

Y′

f = Mt ⊙ Y f (12)

where ⊙ denotes element-wise multiplication. The mask Mt is
designed to attenuate higher frequencies as the diffusion step t

Fig. 3. Schematic illustration of the FK masking mechanism. (a) Clean signal
denoised by the integrated framework. (b) Noisy data. (c) FK mask showing
smooth transition from pass band to stop band, mitigating boundary artifacts.

increases progressively. Mathematically, Mt can be expressed
as

Mt ( f ) =


1, f ≤ fc(t)
linear decay, fc(t) < f ≤ fmax(t)
0, f > fmax(t).

(13)

The FK mask Mt is controlled by two parameters. First,
the outer radius, fmax, defines the filter’s cutoff boundary, and
components beyond this radius are attenuated to zero. Cru-
cially, fmax increases as the timestep t decreases, progressively
expanding the filter’s coverage to eventually encompass the
full frequency spectrum relevant to the observed seismic data.
As illustrated in Fig. 3(a) and (b), the initial fmax (at the start of
the reverse process) is set based on the FK spectrum of data
preliminarily denoised using an integration framework [21].
This ensures a more informed starting point for the C-DDPM
generation.

And then to mitigate potential boundary artifacts arising
from abrupt spectral cutoffs, we introduce an inner radius fc,
typically set to ( fmax/2). In this radius fc, the filter gain is
unity (i.e., components pass unaltered). As shown in Fig. 3(c),
a smooth transition between the full-pass region (inside fc)
and the zero-gain region (outside fmax) is achieved by linear
decay. This smooth transition minimizes artifacts and enhances
the stability of the denoising process.

After masking, an inverse Fourier transform is applied to
reconstruct the filtered signal in the time domain

y′
= F−1(Y′

f

)
(14)
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Fig. 4. Condition of the reverse process of AFKCDM. An FK domain mask, indicated by red circles, is applied to y† during the reverse process. The mask
is initially limited to the low-frequency, low-wavenumber portion of the FK spectrum, and subsequently expands as t decreases. This strategy enables the
bootstrap diffusion model to progressively learn the distribution of y′, starting from low frequencies and incrementally incorporating higher frequencies.

Fig. 5. Illustration of the U-Net architecture used as a backbone of the C-DDPM.

where F−1(·) is the inverse Fourier transform. The recon-
structed signal y′ serves as the updated condition for the
reverse diffusion process.

The reverse diffusion step in C-DDPM is updated to incor-
porate the adaptive FK condition. Let x†

t represent the noisy
signal at step t . The denoised signal x†

t−1 is computed as

pθ

(
x†

t−1

∣∣∣x†
t , y′

)
≈ pθ

(
x†

t−1

∣∣∣x†
t , y′

= F−1(Mt ⊙ F
(
y†))).

(15)

This modification ensures that the reverse process is guided
by the FK domain properties of the conditional signal y,
effectively aligning the model’s output with the dominant
seismic signal frequencies.

As shown in Fig. 4, the incorporation of AFKCDM signifi-
cantly enhances the denoising ability of C-DDPM by ensuring
that only physically meaningful frequencies are retained
throughout the reverse process. This not only improves the
model’s robustness to noise but also reduces the risk of seismic
signal leakage.

D. Network Architecture

Most diffusion models are based on the U-Net architecture,
which is distinguished by its U-shaped combination of an
encoder and a decoder. The encoder shown on the left side
of Fig. 5, typically includes max-pooling layers and dou-
ble convolutions, which reduce the image dimensions while
increasing the number of feature channels. On the right side of
Fig. 5 is the decoder, which shares a similar structure but incor-
porates upsampling operations to restore the features to the
original image size. Additionally, skip connections integrate
encoder features into the decoder to retain spatial information.

1) Architecture: We have implemented Saharia et al. [44]’s
U-Net architecture with minor modifications. As depicted in
Fig. 5, our version of the U-Net features a time embedding
block, five Res blocks each in the encoder and the decoder,
and a centrally located MidAtten block. Fig. 6 shows the
details of these modules. The inclusion of the MidAtten
block, which utilizes self-attention, greatly enhances the U-
Net’s ability to identify relationships between pixels. This
mechanism uses three distinct weight matrices: the query
matrix Q, the key matrix K, and the value matrix V, each
computed independently of the convolutional feature maps by
the respective operators WQ, WK, and WV. This self-attention
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Fig. 6. Detailed internal structure in the U-Net network. (a) Res block.
(b) Output block. (c) Time embedding block. (d) MidAtten block.

Fig. 7. Illustration of ADConv. In the feature map, the dark green grid
points represent vertical or horizontal noise, the red grid points indicate the
convolution kernel and the dark red grid point denotes the center of the kernel.
(a) Standard convolution kernel. (b) 3 × 5 ADConv with horizontal dilation.
(c) 5 × 3 ADConv with vertical dilation.

Fig. 8. Synthetic data labels for the training dataset. VSP data created using
the Marmousi velocity model in three excitation modes. (a) Surface excitation,
(b) interwell excitation, and (c) hydraulic fracturing.

aids in the processing of complex pixel relationships not
typically addressed by standard convolutional layers. Given

Attention(Q, K, V) = softmax

(
QKT

√
dk

)
V (16)

where (dk)
1/2 is the dimension of the query matrix Q and the

key matrix K.
In the architecture of the Res blocks, each combines residual

modules with standard downsampling or upsampling modules,
with an exception made for the bottom layer. The inclu-
sion of residual modules specifically targets the degradation
issues that are frequently encountered in deep convolutional
networks. In both the downsampling and upsampling phases,

two residual modules are systematically utilized to ensure the
integrity of information through the depth of the network.

This configuration not only maintains feature richness but
also stabilizes learning by mitigating the vanishing gradient
problem, common in deeper network structures.

2) Asymmetric-Dilated Convolution: Dilated convolution
expands the receptive field of convolutional kernels by intro-
ducing gaps between the elements of the kernel without
increasing the number of parameters or computational com-
plexity. This enables the network to capture a broader context
and multiscale features, facilitating the identification and
suppression of structural noise patterns in images, such as hor-
izontal and vertical artifacts. This multiscale approach allows
the model to adaptively focus on noise of different frequencies
and orientations. Larger dilation rates effectively capture wide
horizontal or vertical streaks, while smaller dilation rates target
finer noise patterns. By systematically adjusting the dilation
rate, the network can hierarchically process and eliminate
noise at different scales, ensuring complete noise suppression
while preserving the essential structures of the image.

Asymmetric convolution employs elongated kernels in
either the horizontal or vertical direction (e.g., 1 × N or
N × 1) to specifically address directional noise in images.
Unlike traditional symmetric kernels, asymmetric convolu-
tions can more effectively suppress noise oriented in specific
directions, such as horizontal scan lines or vertical grid
artifacts, while preserving the critical structural details of
the image. This method enhances computational efficiency
by reducing the number of parameters and computational
overhead compared to larger symmetric kernels that achieve
similar directional sensitivity, enabling efficient operation on
resource-constrained devices. Additionally, asymmetric con-
volution improves the network’s ability to capture directional
features, aiding in the distinction between noise and genuine
image content. This results in clearer and more accurate
denoising outcomes.

ADConv can be a good combination of asymmetric con-
volution and dilated convolution to eliminate vertical and
horizontal noise [45]. For noisy data in the vertical direction,
we extend the original 3 × 3 convolution kernel into a 3 ×

5 or 3 × 7 ADConv, while the vertical direction remains
unchanged, as shown in Fig. 7(b). After testing [45], compared
with the 3 × 3 kernel, the receptive field of ADConv in
the horizontal direction is increased dramatically, while the
receptive field in the vertical direction remains unchanged.
For horizontally noisy data, as shown in Fig. 7(c), we expand
the convolution kernel size to 5 × 3 or 7 × 3 and set the
expansion factor in the vertical direction accordingly. With
this design, ADConv can filter out the effect of correlated
noise to a greater extent and exclude the noise information
from the receptive field of the masked point. By combining an
asymmetric kernel with the dilation strategy, ADConv effec-
tively expands the model’s receptive field in specific directions
without significantly increasing the number of parameters.
This approach enhances the network’s ability to recognize
and process spatial correlations over long distances, making
it particularly effective in suppressing horizontal and vertical
noise in images.
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Fig. 9. Comparison of supervised denoising results and residuals of different models on synthetic VSP data with added real noise. (a) Ground truth.
(b) DnCNN denoising results. (c) U-Net denoising results. (d) C-DDPM denoising results. (e) The added real noise. (f)–(h) Residuals of the three different
networks. The red rectangular boxes represent complex signals. The blue rectangular boxes represent the difference between the individual model results and
the label. The red arrows indicate the recovery results for different networks. Blue arrows identify signal leakage.

Fig. 10. To ensure robust training and evaluation, the dataset was partitioned
into training, validation, and test sets using an 8:1:1 ratio. Our model was
trained and evaluated on patches extracted from the training and validation
sets, and its performance was then evaluated on the complete, unsegmented
data in the test set.

III. EXPERIMENT

We use synthetic data combined with real noise for train-
ing and use the trained model for real data denoising. The
implementation process is shown in Fig. 2.

In this section, we first validate the effectiveness of
C-DDPM using supervised denoising of synthetic data in
comparison to other network structures. Second, we perform
ablation experiments to demonstrate that the diffusion model

made possible under our innovations is capable of zero-sample
unsupervised denoising of real DAS-VSP data.

A. Synthetic Seismic Data

We first tested the proposed C-DDPM using synthetic seis-
mic data constructed based on the Marmousi velocity model.
The model is detailed with various geological features and has
dimensions of 2301 × 751, consisting of 896 traces, each with
896 sample points, and a spatial resolution of 4 m per point.
Our simulation setup includes 115 shots, each shot having one
source and 384 receivers. The sources are placed every 80 m
starting from 40 m across, at a depth of 8 m. Receivers are
evenly spaced at 24 m, beginning right at the model’s edge,
and are also placed at a depth of 8 m.

We utilize a Ricker wavelet with a dominant frequency
of 25 Hz as our seismic source. The total recording time
for our simulations is 3 s, with a temporal sampling interval
of 4 ms. Forward modeling is performed using the Deep-
wave package [46], which treats both horizontal and vertical
dimensions equally, allowing for precise simulation under
set perfectly matched layer (PML) frequency conditions to
minimize boundary reflections.

We create VSP data for each of the three excitation modes:
surface excitation, interwell excitation, and hydraulic fractur-
ing to form the training dataset labels, which are shown in
Fig. 8. The reason for taking multiple excitation modes is
to construct a more comprehensive diffusion prior. We add
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Fig. 11. Field DAS-VSP data denoising results and residuals. (a) Filter framework denoising result. (b) DnCNN denoising result. (c) C-DDPM denoising
result. (d) C-DDPM + ADConv denoising result. (e) AFKCDM denoising result. (f) Denoising result of our method. (g)–(l) Residuals of the six denoising
methods. The red rectangular boxes in (a)–(f) highlight noise remnants, while the blue rectangular boxes in (g)–(l) indicate signal leakage.

TABLE I
PSNR AND SSIM VALUES FOR DIFFERENT DENOISING NETWORKS:

DNCNN, U-NET, AND C-DDPM UNDER VARYING NOISE LEVELS

noise to the synthetic dataset labels to constitute training data
pairs for model training including artificial noise and real
noise. Artificial noise is synthetic coupled noise, random noise,
vertical noise, and horizontal noise superimposed on each
other, and the noise variance is set to 0.05, 0.1, and 0.5. The
real noise comes from the same FORGE as the real signal to be
denoised, where the part that does not contain seismic signals.
We explore a numerical comparison of the denoising effects
of different module actions. The performance of each config-
uration in processing noise-enhanced seismic data scenarios
is compared quantitatively based on the improvements in the
PSNR and SSIM. The results summarized in Table I reveal the
different effects of the different modules incorporated into the
diffusion model. It can be seen that our proposed combination
approach achieves the highest PSNR and SSIM.

The dataset is divided into training, testing, and valida-
tion sets with a distribution ratio of 8:1:1. The images are
segmented into 128 × 128 patches with 50% overlap, gen-
erating a total of 6714 training patches. For validation, the
original images remain unsegmented to preserve complete-
ness. We apply the classical denoising convolutional network
DnCNN as well as U-Net to the synthetic seismic signals
as a comparison of our proposed C-DDPM method and the
denoising results are shown in Fig. 9, respectively.

Fig. 9(a) denotes the ground truth. Fig. 9(b)–(d) present the
denoising results for different methods. Fig. 9(e) shows the

added real noise. Fig. 9(f)–(h) are the residuals of the three
denoising results. In the denoising results, the red rectangular
boxes highlight complex seismic signals, and the red arrows
indicate discrepancies between the results obtained by different
methods and the true values. In the DnCNN denoising results,
the complex signals are not correctly restored. In the U-Net
denoising results, the complex signals show significant breaks,
whereas the C-DDPM denoising results are the closest to the
true values among the three methods. Additionally, in the
upper blank areas of the denoising results, the remaining noise
from both DnCNN and U-Net can still be observed. The
blue rectangular boxes indicate the differences between the
denoising results and the true values. The differences in all
three methods show that C-DDPM’s residuals are the smallest.
The blue arrows in the residuals point to signal leakage. In the
DnCNN and U-Net, the signal contours are still discernible,
while in C-DDPM, signal leakage is almost undetectable.

B. Field Seismic Data

The real dataset originates from the Stage 2C hydraulic
fracturing production enhancement at the FORGE site in Utah.
The DAS-VSP data were collected from fiber-optic cables
installed in monitoring wells 78-32 at the FORGE geothermal
site. This well, drilled to a depth of 3274.78 feet, extended
approximately 1200 feet into the granite basement rock. The
Silixa iDAS v3 interrogator was employed to measure the
strain rate as DAS-VSP data. During the initial enhancement
of the FORGE site’s enhanced geothermal system (test well
58-32) from late April to early May 2019, the fiber-optic
cables continuously recorded data for 10.5 days. All DAS-VSP
datasets are freely downloadable from the University of Utah
High-Performance Computing Center. In this dataset, the
gauge length is 10 m and the channel spacing is 1 m. The
entire continuous recording is segmented into multiple SEGY
files, with each segment lasting 15 s, at a sampling interval of
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0.5 ms, each file contains 30 000 samples, and the number of
channels ranges from 980 to 1088.

We segment the entire DAS-VSP dataset and extract
112 samples. We selectively download the SEGY files con-
taining detected seismic events and segment them according to
the P-wave arrival sample numbers. The first few and the last
few defective channels are removed, leaving 896 seismic traces
per segment. Then, to improve processing speed, we extract
the portion rich in seismic signals, meaning that we only use
896 sampling points along the time axis (resulting in data of
size 896 × 896). These data are divided into two groups:
one containing seismic signals and the other consisting of
ambient noise without seismic signals. The ambient noise is
then added to the synthetic data to form data pairs for network
training. This approach allows the model to learn more realistic
noise, thereby better distinguishing between noise and signal
and achieving improved denoising performance. The data
containing seismic signals is used as test data, with the trained
model directly applied for denoising to assess its effectiveness.
The construction process of the dataset is shown in Fig. 10.

We test the proposed method on the test set. We compare
different combinations of our methods. Comparisons are also
made with classical conventional methods. The denoising
results of different methods are shown in Fig. 11(a)–(f) and
Fig. 11(g)–(l) are the residuals of the denoising results of
these methods. The red rectangular boxes in Fig. 11(a)–(f)
highlight noise remnants, while the blue rectangular boxes in
Fig. 11(g)–(l) indicate signal leakage. Conventional methods
such as filters [21] are effective in suppressing noise but cause
signal leakage. A single C-DDPM cannot effectively handle
the balance between strongly coupled noise and seismic sig-
nals, resulting in some of the strong noise being misclassified
as signal retention and some of the signal components being
removed. C-DDPM with ADConv can significantly suppress
strongly coupled noise and horizontal noise, but expanding
the receptive field also leads to signal loss. In the result by
AFKCDM, the seismic signal is enhanced, but at the cost of
heavier horizontal noise residues. Our proposed combination
method has the best denoising effect among the four methods,
which suppresses the strong noise and maximizes the preser-
vation of the seismic signal.

IV. DISCUSSION

A. Non-Gaussian Forward Processes for Targeted Denoising

DDPMs predominantly use Gaussian noise in the forward
process, giving them strong generative capabilities, but their
performance in removing other types of noise (e.g., speckle,
and structural) is still not as robust as it could be. This
limitation is mainly because the models themselves are biased
toward Gaussian noise, which may not be able to adequately
capture the features of non-Gaussian noise types. Therefore,
removing these other types of noise poses a significant chal-
lenge, resulting in a degradation of denoising performance.

One potential way to improve the efficiency of DDPMs
in dealing with a wider range of noise types is to incorpo-
rate these different noise patterns into the diffusion process
itself. By integrating non-Gaussian noise perturbations during

the training phase, the model can be specialized to identify
and efficiently remove different noise features. For exam-
ple, incorporating synthetic pretzel-like noise, speckle noise,
or correlated noise into the training data allows the model
to learn more robust denoising strategies that are not solely
dependent on Gaussian noise assumptions. This approach has
the potential to enhance the generalization ability of diffusion
models, making them more versatile in real-world applications
where noise types are diverse and unpredictable.

Further research is needed to explore the best way to inte-
grate these non-Gaussian noise perturbations into a diffusion
framework. This may involve experimenting with different
noise addition strategies, evaluating their impact on model
performance, and fine-tuning the balance between various
noise types during training. By expanding the noise range
of DDPMs, we can develop more comprehensive denoising
solutions that consistently perform well in a wider range of
noisy scenarios.

B. Training Acceleration

A significant limitation of DDPMs, including C-DDPM,
is that their sampling process requires a significant amount
of time. This difficulty is addressed by employing denoising
diffusion implicit modeling (DDIM), which accelerates the
sampling process by significantly reducing the number of time
steps while maintaining competitive generation quality. Unlike
unconditional DDPM, conditions in C-DDPM orient the gen-
eration process to a specific reference, thus trading diversity
for improved relevance and quality of the conditional output.
In our implementation, diversity is significantly reduced to
ensure that the generated denoised images closely match the
DAS-VSP data, with most remaining diversity introduced by
random noise z at each sampling step.

To facilitate diverse outputs for other seismic processing
tasks, a linear combination of conditional and unconditional
noise estimates can be introduced as outlined in (17)

x̂t−1 =
1

√
αt

(
x̂t −

1 − αt√
1 − ᾱt

(
ωϵθ

(
x̂t , t

))
+ (1 + ω)ϵθ

(
x̂t , y, t

))
+ σt z (17)

where ϵθ (x̂t , t) and ϵθ (x̂t , y, t) represent the estimated noise
for unconditional and conditional DDPM, respectively, with ω

as the scaling factor controlling the diversity.

V. CONCLUSION

We develop an adaptive FK conditioning zero-shot denois-
ing network for DAS-VSP data based on the C-DDPM. Our
approach begins by isolating seismic signal components from
the field-acquired DAS-VSP data, separating them from purely
ambient noise. The ambient noise is then combined with finely
synthesized VSP data to create a robust training set, enabling
the network to perform zero-shot denoising on DAS-VSP data
containing seismic signals. Experimental results demonstrate
that the denoising performance of C-DDPM surpasses that of
classical networks like DnCNN and U-Net, on both synthetic
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and real-world datasets. Furthermore, ablation studies reveal
that integrating AFKCDM and ADConv significantly enhances
the model’s denoising capability, minimizes signal leakage,
and achieves remarkable results under zero-shot conditions.

This proposed method offers valuable insights for advancing
seismic signal processing, especially in handling complex
noise environments in DAS-VSP applications.
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