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ABSTRACT

The Loess Plateau in China presents a formidable challenge for
seismic exploration due to its thick, porous surface loess layers that
severely attenuate high-frequency seismic waves, degrading the
resolution of conventional 3D acquisition. However, the region’s
unique topography, crisscrossed by deep gullies formed through
consistent rainfall erosion, provides a natural solution to acquire
high-resolution (HR) data. With thin or absent loess cover, these
gullies delineate natural pathways ideal for 2D crooked-line seis-
mic surveys, where reduced loess interference preserves high-fre-
quency content. Accordingly, these 2D surveys deliver better
resolution than traditional 3D acquisition in the loess-covered
areas. Their seismic response distributions are expected to closely
resemble those of a hypothetical HR 3D data set unaffected by
loess attenuation. Although these localized 2D surveys capture
geologically representative HR features, existing methods struggle
to extrapolate their high-frequency characteristics to broader 3D

volumes, limiting their ability to mitigate loess-induced resolution
loss. To bridge this gap, we use a cycle-generative adversarial net-
work under weak supervision to enhance 3D data resolution by
leveraging unpaired 2D HR crooked-line data. Specifically, our
approach transfers high-frequency features from 2D profiles to
3D volumes processed by conventional swath techniques through
a bidirectional cycle structure, enforcing cross-distribution consis-
tency while preserving geologic integrity. Custom loss functions
and data augmentation further address spectral mismatches and sta-
bilize training under loess-induced complexity. Synthetic and field
experiments demonstrate that our method effectively captures HR
characteristics of 2D data and recovers high-frequency content
attenuated by loess in 3D data. Our approach achieves improved
fidelity and noise robustness compared with traditional spectral
whitening and zero-phase spiking deconvolution. This work under-
scores the untapped potential of integrating spatially sparse but in-
formation-rich 2D surveys with modern deep-learning methods to
overcome persistent resolution limitations in seismic exploration.

INTRODUCTION

The Loess Plateau contains rich mineral resources (Yurui et al.,
2021) and plays a crucial role in economic development through
resource exploration. Seismic exploration is critical to understand-
ing subsurface geologic formations and managing these resources.
However, the Plateau’s vast loess deposits and intricate, gully
crossed topography, as shown in Figure 1, present significant

challenges for seismic data acquisition. Specifically, the near-sur-
face region of the Loess Plateau is characterized by a stratified struc-
ture comprising layers of loess, silt, and sandstone. The surface
loess layer has a thickness ranging from 100 to 300 m and is char-
acterized by low density, low water content, and high porosity. The
porous nature of loess causes rapid seismic energy dissipation,
degrading wave amplitude and frequency as it penetrates deeper.
This attenuates high-frequency components significantly, which are
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essential for detailing subtle geologic structures, reducing the res-
olution and signal-to-noise ratio (S/N) of traditional 3D seismic sur-
veys. As shown in Figure 1, when positioned on these shallow,
porous loess layers, receiver A encounters significant wave attenu-
ation, compromising data resolution. Therefore, advanced seismic
processing techniques are vital for precise geologic interpretations
and effective resource exploration.
Several methods attempt to address the preceding challenges, such

as optimizing survey geometries (Yao et al., 2004; Ye, 2011; Wang
et al., 2014; Tian et al., 2021) and advancing resolution enhancement
algorithms. Although effective, high-density acquisition strategies are
often costly and less efficient in challenging environments, such as the
Loess Plateau. Common resolution enhancement algorithms such as
deconvolution (Wiggins, 1978; Taylor et al., 1979; Sacchi, 1997; Sui
and Ma, 2020; Zhang et al., 2022), inverse Q filtering (Wang, 2006;
Xue et al., 2019; Li et al., 2020; Ke et al., 2023), spectral whitening
(Bian and Zhang, 1986; Naghadeh and Morley, 2017), and blueing
(Lancaster and Whitcombe, 2000; Kazemeini et al., 2010), while
prevalent in the industry, often fall short in areas with complex geo-
logic structures or high noise levels.Q-compensated migration (Zhang
et al., 2013, 2024b; Wang et al., 2022a; Xu et al., 2024) is also a
practical approach to compensating for seismic energy and frequency
attenuation. However, it faces challenges in accurately estimating Q
values, which are crucial yet difficult to determine for practical
applications. Due to severe seismic wave attenuation and complex
terrain, the Loess Plateau requires advanced eco-friendly and cost-
effective methods beyond conventional 3D seismic techniques to by-
pass or mitigate wave attenuation and improve data resolution.
Crooked-line 2D seismic reflection surveys reduce environmen-

tal impact and costs (Wu, 1996; Malehmir and Bellefleur, 2016).
This approach, adapting to the terrain by following the natural con-
tours of access routes (Nedimović and West, 2003), is successfully

applied in various regions (Schmelzbach et al., 2007; Saatçlar et al.,
2014; Wadas et al., 2016; Cheraghi et al., 2020; Jodeiri Akbari
Fam et al., 2021). These intentionally crooked lines provide flexible
acquisition strategies that accommodate geographical constraints.
Because these surveys often traverse challenging terrains, they ne-
cessitate high-density profiling, where average fold coverage typi-
cally exceeds 100 traces per gather (Nedimović and West, 2003).
Recent advancements show that 2D crooked-line data can yield im-
ages of higher resolution than swath 3D methods, offering valuable
insights into 3D geologic structures (Nedimović et al., 2003; Kim
et al., 2014; Jodeiri Akbari Fam et al., 2023).
The distinct terrain of the Loess Plateau, marked by crisscrossed

gullies, offers unique prospects for seismic surveying. As shown by
the blue line in Figure 1, these deep gullies, carved by long-term
water and rainfall erosion, have stripped away or significantly
thinned the loess cover. Positioning seismic receivers along these
pathways (e.g., receiver B in Figure 1) reduces seismic wave attenu-
ation, allowing more efficient energy transmission. This setup is
particularly conducive to 2D crooked-line seismic surveys, which
navigate the natural contours of these deep gullies to avoid areas
where thick loess layers heavily absorb and scatter seismic waves.
As a result, these 2D surveys achieve significantly higher resolution
than conventional 3D methods in the same region. Therefore, in the
challenging environment of the Loess Plateau, traditional 3D seis-
mic surveys are often complemented by these specialized 2D sur-
veys to provide additional information. The 2D HR data collected
from natural gullies on the Loess Plateau closely resemble the seismic
response distributions of an ideal 3D data set undistorted by loess
absorption. Inspired by compressive sensing (Baraniuk, 2007), which
suggests that fewer, strategically acquired samples can reconstruct a
high-quality signal, we ask: can these random, sparse, yet informa-
tion-rich 2D samples be used to enhance the resolution of a 3D
data set?
Significant gaps exist in effectively merging sparse 2D crooked-

line surveys with 3D seismic data sets. These specialized 2D surveys
offer critical, high-resolution (HR) insights into the underlying geo-
logic structures but cover limited areas. In contrast, while swath 3D
seismic techniques span a larger space with additional spatial details,
they yield data of comparatively lower resolution (LR) and miss
many reflectors observed in two dimensions (Cheraghi et al., 2020).
Their acquisition setting and processing workflow are significantly
different. Accordingly, these discrepancies pose substantial chal-
lenges to comprehensive 3D resolution enhancement. Although
advanced deep-learning models show promise for resolution en-
hancement, they primarily depend on paired training data sets (Zhang
et al., 2019, 2024a, 2024c; Chen et al., 2021; Li et al., 2021). To date,
they remain poorly adapted to the unique challenges of training on
disparate seismic surveys, such as 2D crooked-line and 3D swath
surveys, which rarely overlap (Greer and Fomel, 2018). Innovative
approaches are required to improve 3D data by learning unpaired HR
2D data to overcome these barriers.
Recent advances in weak supervision (Jiang et al., 2021; Wei

et al., 2021; Yang et al., 2024) show potential for enhancing seismic
resolution using unpaired training samples. Cycle-generative adver-
sarial networks (CycleGAN), augmented with a reverse generator
compared with the original GAN, adopt a Cycle-in-Cycle network
architecture to facilitate translation between different data set dis-
tributions (Zhu et al., 2017). In seismic processing, most CycleGAN
applications focus on either supervised learning (Kaur et al., 2020;

Figure 1. Illustration of seismic acquisition in a complex gully
crossed topography of the Loess Plateau. Receiver A is positioned
in a typical loess-covered area where signal attenuation is pronounced.
Receiver B is strategically placed along a natural gully, where the
thinned loess allows for reduced attenuation and clearer signal trans-
mission. This figure describes the feasibility of using crooked-line
seismic surveys in complex terrains to enhance data resolution and
accuracy.
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Sun et al., 2023; Zhao et al., 2023; Goyes-Peñafiel et al., 2024; Lin
et al., 2024; Xia and Dai, 2024) or semi-supervised learning (Cai
et al., 2022; Wang et al., 2022b). Recently, initial studies have dem-
onstrated the viability of weakly supervised learning with CycleGAN
for improving seismic data resolution. For example, an enhanced
CinCGAN architecture (Yuan et al., 2018) successfully restores
high-frequency components in LR seismic data by leveraging nearby
higher-resolution data sets (Liu et al., 2023). Further developments
adapt this framework to 3D networks, where HR information from
shallow layers is used to enhance resolution of deeper structures
within the data set (Liu et al., 2025). In addition, this technique is
applied to ground-penetrating radar data, with efforts to objectively
assess its effectiveness against a ground-truth model (Liu et al.,
2024b). These findings suggest that weakly supervised GANs effec-
tively address data mismatch challenges in real-world applications,
bypassing the need for strictly paired labels.
The HR 2D crooked-line profiles and conventional 3D data sets

after resolution enhancement, both collected in the same region on
the Loess Plateau, should inherently exhibit similar resolution char-
acteristics. This distribution similarity enables weak supervision
to transform characteristics between these data sets effectively.
Renowned for its robust capability to translate distributions between
unpaired data sets, we adapt CycleGAN to enhance the LR 3D data
by learning from 2D HR data. Specifically, we develop a dual-cycle
consistency approach to capture complex relationships between
2D and 3D data. This dual-cycle structure also helps address the
common challenge of mismatched low-frequency components
between these data sets. Our dual-cycle approach ensures more
reliable and physically consistent resolution enhancement by
enforcing reversibility and preserving the essential low-frequency
structures in the transformations. We further use 3D generators
to better capture spatial correlations inherent in 3D data sets. In ad-
dition, we incorporate custom loss functions, such as improved
identity loss, which aligns the bandwidth of 2D HR and 3D LR
data to minimize discrepancies in low-frequency characteristics,
and data augmentation techniques to stabilize the training process.
These innovations collectively address the challenge of transferring
resolution features while maintaining data integrity.
The remainder of this paper is organized as follows: the “Method”

section describes our weakly supervised CycleGAN framework,
focusing on its dual-cycle architecture and custom loss functions.
The “Examples” section presents synthetic and field experiments,
along with implementation details and evaluation metrics, including
a comparative analysis with traditional methods. The “Discussion”
section explores key challenges in processing 2D crooked-line
profiles and proposes potential future improvements.

METHOD

We begin by introducing specific mathematical notation used in
this study. The tensor X, represented as X ∈ Ri×x×t, embodies a 3D
structure with inline i, crossline x, and time t dimensions. Its L2

norm can be expressed as kXk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;x;tX
2
i;x;t

q
. This norm quan-

tifies the overall magnitude of the tensor across its entire 3D space.
Similarly, the matrix Y is defined as Y ∈ Rn×t, with dimensions of
trace number n and time t.
A critical operation within our framework is the tensor inner

product. The inner product between two third-order tensors, A
and B, is denoted by hA;Bi and calculated as follows:

hA;Bi ¼
XI

i¼1

XX
x¼1

XT
t¼1

Ai;x;t · Bi;x;t; (1)

where I, X, and T represent the total number of indices along the
inline, crossline, and time dimensions, respectively. This scalar
result quantifies the alignment or similarity between A and B by
aggregating the element-wise products across all corresponding en-
tries of the tensors, offering insights into the correlation between
complex data structures.

Weak supervision with bidirectional cycle consistency

Considering the unpaired nature of 3D conventional data and 2D
crooked-line seismic data, we use weak supervision to build a map-
ping relationship between their distributions. By referencing HR 2D
data from crooked-line surveys, we aim to enhance 3D data reso-
lution in the Loess Plateau region substantially. A straightforward
approach would involve slicing the 3D data to align with the 2D
crooked-line seismic data and training a network optimized for
2D inputs. After training, the network improves the resolution
of entire 3D data with sequential 2D profiles, which are reassembled
into the original 3D format. However, this approach has a notable
limitation: the 2D network primarily processes individual 2D
profiles and may not effectively capture complex 3D structural
nuances, potentially leading to unstable training and compromised
spatial continuity (Liu et al., 2023).
To overcome this shortcoming, we propose an innovative training

workflow that maintains the dimensional integrity of the original data,
thus significantly enhancing the resolution and spatial continuity of
the resulting 3D seismic data. As shown in Figure 2, the proposed
workflow uses CycleGAN as the backbone and adapts it to effectively
transfer resolution features between 3D swath data and crooked-line
2D data. The idealized swath seismic data unaffected by attenuation
and crooked-line seismic data, both from the same region on the Loess
Plateau, share similar distributions of seismic responses but differ in
dimensionality. Our network design accommodates dimensional
differences and allows simultaneous 2D and 3D data processing.
Nevertheless, their distinct acquisition designs and processing work-
flows complicate data correspondence. We introduce a bidirectional
cycle structure in network training to reduce learning complexity.
Specifically, it includes a forward cycle PLR → PHR → PLR and a

Figure 2. Workflow for the proposed weakly supervised resolution
enhancement with bidirectional cycle consistency.
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reverse cycle PHR → PLR → PHR, where PLR and PHR denote the
probability distributions of LR and HR data, respectively. This
dual-cycle approach stabilizes the training process and enables the
network to capture more comprehensive correlations between the data
sets, enhancing overall data interpretation.
The bidirectional cycle incorporates two sets of generators and dis-

criminators. The forward generatorGLR2HR maps LR data from PLR to
HR data following PHR, whereas the reverse generator GHR2LR reverts
HR data back to LR. Each cycle includes a corresponding discrimi-
nator, DLR and DHR, which assess the authenticity of the data accord-
ing to the distributions PLR and PHR, respectively. Specifically, in
the forward cycle, GLR2HR learns to upgrade 3D LR seismic data
to its HR counterpart. The input X following PLR is from 3D LR seis-
mic data, with 2D HR seismic data Y ∼ PHR serving as learning tar-
gets. The output XHR ∼ PHR features enhanced resolution of the 3D
LR data. In contrast, GHR2LR simulates the reverse process, aiming to
restore HR seismic data from PHR back to its original LR distribution
PLR. Inputting XHR to GHR2LR yields X 0 ∼ PLR, which follows the
same distribution as X . The consistency of the forward cycle ensures
X 0 closely aligns withX , and vice versa. The bidirectional consistency
enforced through the loss function during training guarantees the
reversibility of resolution enhancements, thus enhancing reliability.
Notably, in the forward cycle, GLR2HR and GHR2LR take 3D data as
inputs. In contrast, in the reverse cycle, the inputs for both generators
are 2D data, which is expanded along a new axis to match the 3D
convolutional kernels. This adaptation allows an integrated processing,
maintaining training effectiveness across different data dimensions.
The HR discriminatorDHR plays a crucial role in refining the gen-

erator’s performance by differentiating between generated HR data
XHR and the real HR data Y. This differentiation guides GLR2HR

to produce outputs that closely follow PHR. Importantly, since
XHR is 3D and Y is 2D, a random inline 2D profile ½XHR�i;∶;∶ or
crossline 2D profile ½XHR�∶;x;∶ is extracted from XHR for discrimina-
tion with Y to ensure fairness and reduce computational costs. This
selection process is integral to the adversarial framework, enhancing
the realism of the generated HR data. By forcing the generated data to
closely align with the target HR references, it significantly improves

the resolution enhancement ability of GLR2HR. The reverse cycle
mirrors this process by switching roles, where the discriminator
DLR evaluates the LR data, ensuring that enhancement and degrada-
tion processes maintain high fidelity relative to the corresponding
data distribution. This symmetric adversarial approach in both cycles
facilitates consistent, high-quality data transformations in both direc-
tions, contributing to the robustness and reliability of the model.

Network architecture design

The network architecture is shown in Figure 3, with Figure 3a
illustrating the generator and Figure 3b the discriminator. The gen-
erator uses a 3D network structure to effectively capture the complex
correlations inherent in 3D data while maintaining compatibility with
2D processing requirements. Data input begins at the first convolu-
tional layer and progresses through 16 serially connected residual
blocks (He et al., 2016). Each residual block, containing two convo-
lutional layers linked by residual connections, is further enhanced by
a broader cross-layer skip connection encompassing the entire group
of blocks. This structure supports deeper network architectures with-
out sacrificing training effectiveness. The extracted feature maps are
then processed through several convolutional layers, culminating in
an output via a Tanh activation function.
Key features of the generator are designed as follows: the absence

of pooling layers preserves critical HR details vital for accurate seis-
mic analysis, preventing the loss of valuable information. Residual
blocks mitigate the vanishing gradient problem, enhancing the net-
work’s ability to learn effectively even with increased depth (He
et al., 2016). Moreover, the deliberate omission of batch normali-
zation layers increases the model’s generalization ability across dif-
ferent seismic data sets, which is crucial for real-world applications
(Wang et al., 2020). These features collectively improve the fidelity
and precision of the network.
The discriminator is configured as a 2D network designed for

precise discrimination. It starts with an initial convolutional layer,
setting the stage for deeper feature extraction. A sequence of five
convolutional blocks follows this layer to refine the feature detection
process. Diverging from traditional discriminators, this model adopts

a PatchGAN architecture (Isola et al., 2017),
replacing the final fully connected layer with a
convolutional layer. In this way, it uncovers
nuanced geophysical features by focusing on
localized details. Each convolutional block com-
prises a convolutional layer, a batch normalization
layer, and a Leaky rectified linear unit (ReLU) ac-
tivation function (α ¼ 0.2). The Leaky ReLU
function maintains gradient flow by allowing a
slight, nonzero gradient when the unit is not active
and thus helps maintain gradient flow. The output
is then funneled through a Sigmoid activation
function, resulting in a probability range from zero
to one. This provides a probabilistic assessment of
whether the input data conform to the desired real
or fake distributions. In addition, this architecture
minimizes the total number of parameters, which
reduces computational load and accelerates train-
ing. The streamlined design and localized focus
contribute to quicker convergence and improved
discriminator efficiency, ultimately yielding
higher-resolution and more precise outputs.

Figure 3. Network architecture. (a) The generator and (b) the discriminator. The symbol
k denotes the kernel size, n specifies the number of kernels applied in each convolutional
layer, and s represents the stride, which defines the step size with which the kernel
moves across the input image.
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Note that the generator and discriminator for both cycles share the
identical architectures described previously and are trained simulta-
neously. However, their parameters are updated independently. On
the one hand, this allows each network to adapt and optimize based
on its specific role within the cycle without interference from the
other’s parameter adjustments, enhancing adaptability. In contrast,
this streamlined training minimizes extensive hyperparameter tuning,
improving training efficiency and effectiveness.

Training data set preprocessing

The original data sets are often oversized and exceed graphics
processing unit (GPU) processing capabilities for network training.
To address this, we partition them into fixed-size blocks with a 50%
overlap, forming smaller 3D cubes and 2D patches indexed by j, des-
ignating them as X j and Yj. We apply min-max scaling and auto-
matic gain control (AGC) to ensure uniform signal amplitude
across data sets, enhancing training efficiency.
To improve the robustness of our training data set, we implement

three data augmentation strategies: inverting the amplitude, flipping
spatially, and swapping spatial dimensions. These methods address
imbalances in sample distribution resulting from initial uniform
partitioning and increase data set diversity, which is essential for
practical model training.
We manually adjust the augmentation to balance the number of

samples between input data and learning targets. Ultimately, we
compileM random pairs of fX j; Yjg for weak supervision training.
This strategy ensures a comprehensive and balanced data set, creat-
ing optimal conditions for training robust neural networks capable
of managing real-world data complexities.

Loss functions

In addition, the preceding training data sets, loss functions are
essential as they direct network training optimization. Given the di-
mension mismatch between input training data and learning targets,
we carefully tailor generator and discriminator loss functions for our
resolution enhancement tasks.

Generator loss

We use an integrated generator loss function for updating forward
and reverse generators simultaneously, customized for 2D and 3D
training data. The generator loss LGen comprises four parts: adver-
sarial loss Ladv, cycle consistency loss Lcyc, identity loss Lidt, and
total variation loss LTV, defined as follows:

LGen ¼ w1Ladv þ w2Lcyc þ w3Lidt þ w4LTV; (2)

where w1; w2; w3; and w4 are the trade-off weights assigned to each
loss. The weights should be correctly selected to ensure that these
loss functions collaboratively contribute to enhancing seismic
resolution. To achieve this, we empirically optimize these weights
using synthetic data to find an effective combination and fine-tune
them based on real data experiments.
The adversarial loss ensures that the outputs of GLR2HR and

GHR2LR are realistic sufficient to fool DHR and DLR, respectively.
We extract a 2D profile from the 3D data through random slicing
to resolve the dimension disparity, allowing for effective integration
with the 2D crooked-line data. We select the longer spatial dimen-

sion for slicing to enable a more comprehensive understanding of
3D data distribution. For instance, when the input crossline dimen-
sion exceeds its inline length, Ladv is defined as

Ladv ¼ EX j∼PLR
½logð1 −DHRð½GLR2HRðX jÞ�i;∶;∶ÞÞ�

þ EYj∼PHR
½logð1 −DLRðGHR2LRðYjÞÞÞ�; (3)

and vice versa. We use an alternating optimization strategy where
the discriminators are fixed during generator updates to ensure a
stable target and consistent gradient flow for more stable training.
Cycle consistency loss ensures outputs produced by forward and

reverse generators are reversible, maintaining data consistency
before and after the transformation:

Lcyc ¼ EX j∼PLR
½k½GHR2LRðGLR2HRðX jÞÞ� − X jk1�

þ EYj∼PHR
½kGLR2HRðGHR2LRðYjÞÞ − Yjk1�: (4)

Identity loss, calculated using L1 loss and multiscale structural
similarity loss (Zhao et al., 2016), ensures consistency between
generator input and output data:

Lidt ¼ EȲj∼ ~PLR
½L1ðGLR2HRðȲjÞ; YjÞ

þ LMS−SSIMðGLR2HRðȲjÞ; YjÞ�
þ EYj∼PHR

½L1ðGHR2LRðYjÞ; ȲjÞ
þ LMS−SSIMðGHR2LRðYjÞ; ȲjÞ�; (5)

where ~PLR approximates LR distribution PLR and we achieve this
by filtering Y such that Ȳ matches the bandwidth of samples
from PLR.
The total variation loss, incorporated to enhance smoothness,

mitigates high gradients during training and facilitates stable con-
vergence. For 3D data from the forward generator and 2D data from
the reverse generator, it’s defined as

LTV¼EYj∼PHR
½k∇tGHR2LRðYjÞk1þk∇xGHR2LRðYjÞk1�; (6)

where the symbols∇t and∇x represent the gradients with respect to
the temporal t and spatial x dimensions, respectively.
The Lidt and LTV losses are computed solely on Y. This con-

serves computational resources, showcasing a unique advantage
of our 2D to 3D learning strategy. It also prompts generators to fo-
cus more on 2D crooked-line data, enhancing their capability to
accurately represent and learn from its distribution characteristics.
The subsequent experiment section validates that these 2D training
losses have sufficient robustness to produce satisfactory results,
consistently producing satisfactory results across various tests.

Discriminator loss

In line with the core of our bidirectional CycleGAN architecture,
we use two discriminators, DHR and DLR, to evaluate the authen-
ticity of outputs from the generators. These discriminators are cru-
cial for training our model to produce high-quality seismic data
following target probabilistic distributions. The discriminators’
effectiveness in distinguishing between real and generated data is
enhanced using a discriminator loss function structured to penalize
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incorrect classifications and refine their performance over time. The
formulation of this loss, based on negative log-likelihood, is as follows:

LDis¼−EX j∼PLR
½logDLRð½X j�i;∶;∶Þ

þ logð1−DHRðGLR2HRð½X j�i;∶;∶ÞÞÞ�
−EYj∼PHR

½logDHRðYjÞ
þ logð1−DLRðGHR2LRðYjÞÞÞ�: (7)

Continuous refinement of this process strengthens the discrimi-
nators and significantly boosts generators to produce increasingly
realistic seismic data, which is critical for accurate and reliable
resolution enhancement.

EXAMPLES

This section evaluates our resolution enhancement method using
synthetic and field data sets. The performance with synthetic data is

quantitatively assessed by calculating S/N and
Pearson correlation coefficients (PCC). Suppose
XHR and XLR represent the synthesized HR and
LR data, respectively. The enhanced resolution
output from our network is represented as
XLR2HR ¼ GLR2HRðXLRÞ. The calculation for
S/N is defined as follows:

S=N ¼ 10 log

� kXHRk22
kXHR − XLR2HRk22

�
; (8)

and PCC is calculated by

PCC¼ hXHR−μHR;XLR2HR−μLR2HRi
kXHR−μHRk2 ·kXLR2HR−μLR2HRk2

;

(9)

where μHR and μLR2HR are the mean values of the
respective tensors. These metrics are crucial
indicators of the effectiveness of our method, re-
flecting significant resolution improvements after
network processing.

Synthetic data example

Training data set construction

This section uses the open-source Synthoseis
model (Merrifield et al., 2022) to construct syn-
thetic seismic data sets for validating our method-
ology. We choose this package for its capability to
generate relatively large 3D models. By manually
setting parameters, we derive reflection coeffi-
cients, which are then convolved with Ricker
wavelets at various central frequencies to produce
LR and HR 3D seismic data sets. Specifically, the
45 Hz Ricker wavelet convolution represents
the HR data, and the 30 Hz wavelet represents
the LR data.
The dimensions of the simulated seismic data

are 400 × 400 × 600 (inline, crossline, and time
dimensions, respectively), with inline and cross-
line intervals of 10 m and a time sampling of
1 ms. To mimic natural deep gullies for 2D
crooked-line acquisition, we randomly draw sev-
eral sinusoidal curves across the 3D data, as shown
in Figure 4a. Following these blue curves, the data
are segmented into several sinusoidal cylindrical
profiles with faults, as shown in Figure 4b. These
profiles are used as HR targets for our CycleGAN,
and the entire LR 3D data set serves as input for

Figure 4. Simulating 2D crooked-line acquisition in a synthetic 3D seismic data set.
(a) Overlaid acquisition curves. These blue curves depict potential paths for 2D
crooked-line acquisition, capturing seismic data along irregular trajectories which re-
present natural gully terrains. The dotted green lines mark the profile locations used
for subsequent evaluation. (b) Each curve leads to the segmentation of the 3D data into
2D profiles, which serve as HR targets for resolution enhancement.

Figure 5. Examples of simulated seismic data profiles. (a) HR crooked-line data sample
1, (b) HR crooked-line data sample 2, (c) low-resolution data inline profile (inline = 200),
and (d) low-resolution data crossline profile (crossline = 200).
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the network, as exemplified in Figure 5. In addition, we compute the
normalized multitrace amplitude spectra for both data sets, highlight-
ing significant differences in spectral widths as shown in Figure 6.
Before network training, these data sets undergo AGC and nor-

malization, as outlined in the previous section, to ensure training
stability. The LR seismic data are divided into blocks of 11 × 80 ×
80 (or 80 × 11 × 80), sampled uniformly throughout the data set.
Because we are not using supervised learning, the placement of
these LR cubes is not constrained by proximity to 2D curved paths,
demonstrating significant acquisition flexibility. Similarly, the 3D
HR data set is segmented into 80 × 80 sections. After data augmen-
tation, these segments are fed into the network for weakly super-
vised learning. This process enables the network to learn from
the distribution of randomly extracted 2D HR data, effectively
enhancing the resolution of 3D LR data and facilitating unpaired
resolution enhancement.

Training parameter setting

The Adam optimizer (Kingma and Ba, 2014) is used for model
training, with parameters set as β1 ¼ 0.5, β2 ¼ 0.999, and
ϵ ¼ 10−8. Here, β1 and β2 control the exponential decay rates of
the moving averages for the first and second moments of the gra-
dients, respectively, influencing the speed and stability of model
updates. The symbol ϵ is a small constant added to the denominator
to prevent zero division during computation, ensuring numerical
stability. Training samples are randomly cropped from rectangular
regions of synthetic seismic profiles using uniform distribution
sampling. The parameter settings in equation 2 are w1 ¼ 0.05,
w2 ¼ 25, w3 ¼ 5, and w4 ¼ 2. The network starts with a learning
rate of 0.0001, decaying to half every 10,000 pairs of samples over
20,000 epochs with a batch size of two. We use four NVIDIA 3090
GPUs to train the network for 2.5 h. Figure 7 shows the generator
and discriminator loss curves during training. The generator loss
decreases steadily, indicating consistent refinement of generated
outputs. The discriminator loss exhibits minor, bounded fluctua-
tions, which are characteristic of adversarial dynamics. These insta-
bilities arise from the competitive interplay between the networks
but eventually stabilize into equilibrium, ensuring balanced

optimization. The following results demonstrate that these fluctua-
tions do not compromise output quality.

Results

To evaluate the effectiveness of the proposed method, we use
spectral whitening (Bian and Zhang, 1986) and zero-phase spiking
deconvolution (Leinbach, 1995; Robinson and Treitel, 2000) for
comparison, which are widely recognized in the industry. The as-
sessment is conducted from five perspectives: inline and crossline
profiles, time slices, fault preservation, and normalized multitrace
amplitude spectra. In addition, we validate the efficacy of each
model component through ablation studies.
Figure 8 shows the selected inline profile (inline = 200) for val-

idation. Figure 8a and 8b shows the LR and the corresponding HR
simulated data, respectively. For comparison, Figure 8c and 8d shows
the outcomes of spectral whitening and spiking deconvolution, re-
spectively, whereas Figure 8e shows the results after resolution en-
hancement using the proposed network method. A comprehensive
comparison of these approaches reveals that all three methods signifi-
cantly improve the resolution of the LR data and effectively preserve
crucial structural information, such as faults. However, the network
method yields results that are more closely aligned with the HR data,
demonstrating better resolution enhancement accuracy. A closer

Figure 6. Comparison of normalized multitrace amplitude spectra
for HR and low-resolution (LR) data.
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Figure 7. Training loss curves with synthetic data. (a) Generator
loss and (b) discriminator loss. Both smoothed curves demonstrate
stability, reflecting balanced adversarial learning and effective con-
vergence during training.

Enhancing resolution by CycleGAN V345

D
ow

nl
oa

de
d 

10
/1

9/
25

 to
 1

42
.2

44
.1

91
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

24
-0

55
7.

1



examination of the areas highlighted in green boxes reveals that spec-
tral whitening and spiking deconvolution result in blurred seismic
events and poorly resolved underlying structures. In contrast, the
network method successfully recovers fine geophysical details, pro-
viding a more accurate representation of geologic sequences. Further-
more, the yellow arrow highlights regions where the network method
maintains better event continuity. In contrast, spectral whitening and
spiking deconvolution fail to preserve local continuity despite their
overall effectiveness. This comparative analysis underscores the ad-
vantage of the proposed method in enhancing seismic resolution
compared with traditional methods.
Figure 9 shows the results from a crossline profile (crossline = 200),

offering a direct comparison between the spectral whitening shown in
Figure 9c, spiking deconvolution presented in Figure 9d, and our net-
work method shown in Figure 9e. The network method significantly
enhances LR data’s resolution while preserving the original strati-
graphic details. This precision identifies subtle geologic variations
indistinguishable from LR data. In addition, the outputs from our
method closely match the correspondingHR data shown in Figure 9b,
illustrating its accuracy in improving seismic resolution. The green-
boxed areas, characterized by parallel layers, serve as ideal regions
for validating fidelity after resolution enhancements. Spectral whiten-
ing produces discontinuous seismic events that complicate strata
sequence interpretation, while spiking deconvolution introduces ar-
tifacts that distort seismic events. These artifacts potentially lead
to misinterpretation of geologic structures and sequences. In contrast,

the network method provides a distinct and coherent delineation of
seismic layers, facilitating more reliable geologic analysis. Moreover,
as indicated by red arrows, both conventional methods exhibit
notable limitations: spectral whitening shows boundary distortions
at window function boundaries for certain structures, and spiking
deconvolution fails to achieve high-fidelity resolution enhancement.
In contrast, our proposed method preserves global structural integrity,
demonstrating its enhanced capability in enhancing seismic reso-
lution.
Figure 10 shows the results at a 300 ms time slice, comparing three

techniques. Although all methods enhance clarity and preserve fault
structures, they render geologic details differently. Spectral whiten-
ing, as shown in Figure 10c, increases the visibility of seismic layers
but often produces less distinct interfaces, leading to blurred depic-
tions of structural complexities. Spiking deconvolution, shown in
Figure 10d, performs slightly worse than spectral whitening, as it fails
to enhance layer clarity adequately. This shortcoming limits its ability
to resolve intricate details, particularly within the green-boxed re-
gions, which are critical for accurate geologic interpretations. In con-
trast, our network method, shown in Figure 10e, delivers sharper
interfaces and more defined geologic features, particularly around
crucial boundaries. This precision is essential for accurate subsurface
mapping and resource identification. Within the green-boxed areas,
the network method significantly outperforms the other two methods
by effectively reconstructing subtle details and preserving layer con-
tinuity, whereas conventional methods demand careful trade-offs.

a) b) c)

d) e)

Figure 8. Comparison of inline profile results (inline = 200) of synthetic data. (a) Original LR data, (b) corresponding HR data, (c) results by
spectral whitening, (d) results by zero-phase spiking deconvolution, and (e) results by the proposed method. The green boxes highlight areas
where the proposed method distinctly improves clarity and reveals fine geologic structures, in contrast to the blurred results from spectral
whitening and spiking deconvolution. The yellow arrows point to regions where our method demonstrates superior continuity of seismic
events.

V346 Liu et al.

D
ow

nl
oa

de
d 

10
/1

9/
25

 to
 1

42
.2

44
.1

91
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

24
-0

55
7.

1



In addition, red arrows highlight complex formations indistinct in the
original LR data. Although spectral whitening and spiking deconvo-
lution obscure these critical details, our network method restores
them effectively.
We calculate the positive curvature attribute (Chopra and

Marfurt, 2007; Wang et al., 2018) for this time slice to further assess
the preservation of fault structures. As shown in the red circle
regions of Figure 11, our network provides clear and continuous
curvature attributes, enhancing fault clarity and continuity. This
contrasts with the conventional methods, which often yield frag-
mented or less coherent curvature attributes, hindering fault inter-
pretation. These results confirm the network method’s satisfactory
ability to manage complex geologic formations, proving it a valu-
able tool for enhancing seismic data resolution and ensuring reliable
subsurface interpretations.
Preserving low-frequency information while expanding effective

bandwidth to enhance high-frequency characteristics is crucial for im-
proving seismic resolution. As shown in Figure 12, the normalized
multitrace amplitude spectra provide key insights. All three methods
effectively enhance high-frequency features by significantly extend-
ing bandwidth, which is essential for detailed geologic examination.
However, they exhibit varying performance in balancing bandwidth
extension with spectral fidelity. Spectral whitening achieves the high-
est bandwidth extension but it inevitably introduces high-frequency
artifacts that mismatch the HR data beyond 100 Hz (– 20 dB). These
artifacts reflect the inherent trade-off in spectral whitening between
aggressive bandwidth extension and maintaining spectral fidelity,

which can limit its effectiveness for geologic applications that require
precise high-frequency details. Spiking deconvolution also extends
the low-frequency range, which could be a potential advantage. How-
ever, since we are working with land data that typically contain
ground roll and scattered noise, the reliability of this low-frequency
extension is questionable, as it may amplify unwanted noise. In ad-
dition, spiking deconvolution exhibits limited resolution enhancement
overall due to the sharp drop-off in its amplitude spectrum approxi-
mately 70 Hz. In contrast, our network method strikes the best balance
among the three techniques. It faithfully retains low-frequency fea-
tures below 20 Hz, closely aligning with the original LR data while
extending bandwidth to higher frequencies. Beyond 100 Hz, the net-
work provides a natural and accurate high-frequency response, avoid-
ing the artifacts seen in spectral whitening and more closely matching
the HR data. By combining effective bandwidth extension with detail
preservation, this balanced performance renders the network method
particularly valuable for detailed geologic analysis.

Ablation study

We conduct ablation experiments to assess the impact of the
proposed training strategies. These experiments involve removing
various loss functions and data augmentation strategies during
the training process while keeping the same network architecture
or training parameters. We calculate S/N and PCC between each
network output and HR data to measure their effectiveness. For
comparative analysis, spectral whitening results are also evaluated.

a) b) c)

d) e)

Figure 9. Comparison of crossline profile results (crossline = 200) of synthetic seismic data. (a) Original LR data, (b) corresponding HR data,
(c) results by spectral whitening, (d) results by zero-phase spiking deconvolution, and (e) results by the proposed method. The green boxes
illustrate clear strata layers, validating our method’s effectiveness and fidelity. The red arrows mark structural distortions introduced by spectral
whitening and artifacts from spiking deconvolution, underscoring our method’s superiority in maintaining geologic integrity.
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The results, as shown in Table 1, demonstrate the significant
impact of the adversarial loss Ladv on network training, illustrating
the generator’s robust capability to capture HR data features under
diverse input and label data dimensions. Data augmentation plays a
less prominent role, highlighting the necessity for augmentation
since 3D networks require larger data sets. The cycle consistency
loss Lcyc also proves crucial, emphasizing the importance of impos-
ing consistency constraints on the generator. Other loss functions
are less essential but also contribute to the resolution improvement
process, with their removal leading to decreased PCC and S/N.
Compared with spectral whitening and zero-phase spiking decon-
volution, the network approach produces results that more closely
align with HR data, highlighting its effectiveness in enhancing seis-
mic data resolution and enabling more precise geologic analysis.
We further evaluate the influence of the training number of crooked

lines. As shown in the lower portion of Table 1, increasing the number
of crooked lines leads to notable performance improvements. This
underscores the value of diverse training data, as crooked lines intro-
duce realistic sampling irregularities that enhance the network’s abil-
ity to generalize to complex 3D patterns. Since performance gains
taper off beyond six crooked lines, we set the number to ten in
our complete framework to approach full performance. Remarkably,
even training with a single crooked line achieves results comparable
to traditional methods. This demonstrates that even limited HR 2D

data can enable the network to capture representative geologic fea-
tures and recover fine-scale details, effectively bridging the resolution
gap between sparse 2D surveys and large-scale 3D data sets.

Real data example

Training data set construction

We use a 3D poststack data set obtained via a swath acquisition
from the Loess Plateau and its complementary 2D HR crooked-line
data from the same work area to verify our method. Figure 13 shows
the base map of the surveyed area, showing the trajectories of six
crooked-line seismic surveys (R1–R6) mapped on the 3D inline-
crossline grids from the swath acquisition. These surveys follow nat-
urally formed gullies with thin loess layers, which enable HR 2D
seismic profiling by minimizing loess attenuation. Their trace lengths
are 2645, 2049, 1317, 1472, 3509, and 2632, with a time sampling of
2 ms. A time window of 0.5 to 2.0 s is selected for network training.
Two examples of these 2D HR crooked lines are shown in Figure 14a
and 14b, providing a more precise depiction of geologic sequences.
The 3D LR data set has a size of 1164 × 2400 (inline × crossline)

and shares a time sampling of 2 ms with 2D data. Inline and cross-
line intervals are 20 m. Because its boundary has low fold coverage,
we select a high S/N block near the center with dimensions

a) b)

d)

c)

e)

Figure 10. Comparison of time-slice results (time = 300 ms) of synthetic seismic data. (a) Original LR data, (b) corresponding HR data,
(c) results by spectral whitening, (d) results by zero-phase spiking deconvolution, and (e) results by the proposed method. The green boxes
delineate areas where the network method exhibits better clarity over spectral whitening and spiking deconvolution in capturing intricate
geologic details. The red arrows point to previously unclear complex formations in the LR data, which are now clearly restored by the network
method.
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800 × 2000 to enhance our training. The analysis time window still
ranges from 0.5 to 2.0 s to ensure consistency. Posttraining, we con-
duct comprehensive testing on the entire data set. Figure 14c and
14d shows LR inline and crossline profiles from the 3D data set.

a) b)

d)

c)

e)

Figure 11. Comparison of positive curvature attribute for a time slice (time = 300 ms) of synthetic seismic data. (a) Original LR data, (b) cor-
responding HR data, (c) results by spectral whitening, (d) results by zero-phase spiking deconvolution, and (e) results by the proposed method.
The boxes highlight areas where the network method provides better clarity and continuity in capturing fault structures compared with spectral
whitening and spiking deconvolution.

Figure 12. Comparison of normalized multitrace average amplitude
spectra of synthetic seismic data.

Table 1. Quantitative comparison of synthetic results across
different methods and variants.

Category Methods PCC S/N

Comparative
methods

Spectral whitening 0.9253 8.420

Zero-phase spiking
deconvolution

0.8936 6.7147

Proposed framework
(complete)

0.9610 11.169

Ablations

Without Ladv 0.8478 4.762

Without Lcyc 0.8682 6.050

Without LTV 0.9495 9.956

Without Ladv 0.9441 9.629

Without data augmentation 0.8365 4.707

With 1 crooked line 0.9045 8.194

With 2 crooked lines 0.9358 8.971

With 4 crooked lines 0.9405 9.379

With 6 crooked lines 0.9524 10.542

With 8 crooked lines 0.9572 10.980

Bold values indicate the best performance (highest SNR and PCC).
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These profiles exhibit similar geologic structure features to HR
data in Figure 14 but at LR. A normalized multichannel amplitude
spectrum is shown in Figure 15, highlighting significant spectral
differences. These two data sets provide precise support for validat-
ing our resolution enhancement methods.

Training parameter setting

We also use the Adam optimizer to train the CycleGAN network
for real data, configured with the following parameters: β1 ¼ 0.5,

β2 ¼ 0.999, and ϵ ¼ 10−8. Training samples are randomly cropped
from selected regions of 3D data and 2D profiles using a uniform
distribution. For the parameters outlined in equation 2, the settings
are maintained to w1 ¼ 0.05, w2 ¼ 25, w3 ¼ 5, and w4 ¼ 2. The
network commences with an initial learning rate of 0.0001, halved
every 10,000 sample pairs over 20,000 epochs. The batch size for
input data is still two. This constant parameter setting confirms the
robustness of our method, which is crucial for ensuring its wide
applicability without extensive parameter tuning.

Figure 13. Base map of the real data survey. Crooked-line seismic
surveys (R1–R6) mapped on the 3D inline-crossline grids from the
swath acquisition, performed along naturally formed gullies that en-
able HR 2D seismic profiling by minimizing loess attenuation.

Figure 14. Seismic profiles comparison. (a) HR crooked-line data from the R1 survey, (b) HR crooked-line data from the R5 survey, (c) inline
profile from LR 3D data, and (d) crossline profile from LR 3D data. This figure juxtaposes various seismic profiles, illustrating differences in
resolution and similarities in stratigraphic structures across multiple surveys.

Figure 15. Comparison of normalized multichannel amplitude
spectrum for real data.
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Results

Our method is applied to the complete 3D LR data, showcasing
enhanced results for Figure 14c and 14d. As shown in Figure 16, the
spectral whitening and our method significantly improve the reso-
lution for the inline = 700 and crossline = 1300 profiles. These

profiles exhibit substantial resolution improvements while main-
taining energy consistency observed in the original LR data. This
consistency across different profile orientations confirms the reli-
ability and effectiveness of our method, demonstrating its capability
to deliver enhanced seismic interpretations by capturing intrinsic
property distributions within seismic data.

Figure 16. Enhanced resolution for seismic profiles of Figure 14c and 14d. (a) Improved inline profile at inline = 700 by spectral whitening,
(b) improved inline profile at inline = 700 by the proposed method, (c) improved crossline profile at crossline = 1300 by spectral whitening,
(d) improved crossline profile at crossline = 1300 by the proposed method.

Figure 17. Magnified comparative analysis of inline = 700 profile. (a) Original LR data, (b) results by spectral whitening, and (c) results by the
proposed method. Our method significantly improves reflection continuity within the marked green box areas, revealing subtle geologic
features.
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We also illustrate magnified results for detailed comparison. Fig-
ure 17 shows enlarged images from inline = 700. The magnified view
in Figure 17a shows the original LR data, whereas Figure 17b shows
the spectral whitening results, which produce sharper layers with
finer stratigraphic details. The magnified view in Figure 17c shows
our results. The network output shares strong structural similarity
with spectral whitening, demonstrating remarkable clarity in geologic
features. However, our method yields reflections with increased con-
tinuity and a significant reduction in noise levels, allowing for clearer
identification of geophysical boundaries. Specifically, our method
amplifies weak seismic signals within the marked green box, unveil-
ing previously obscured geologic features. This improvement is cru-
cial for comprehensive subsurface mapping and reduces seismic
interpretation uncertainties. In contrast, while spectral whitening
clarifies some details, it also produces blurred reflections that may
introduce uncertainties.
Similar observations are evident from the magnified crossline

profile at crossline = 1300 in Figure 18. Both methods enhance
the resolution of geologic formations beyond the original profile.
However, as highlighted by the green boxes, our method delineates
geologic interfaces more distinctly, where spectral whitening intro-
duces abrupt discontinuities that complicate geologic analysis. These
comparisons underscore our method’s effectiveness in enhancing
seismic resolution compared with traditional approaches, making
it a more reliable tool for seismic exploration.
Figures 19 and 20 further show results for time slices at

time = 1420 ms and time = 1600 ms, respectively. Both enhancement
methods provide a clearer visualization of subtle changes, allowing
the identification of minor depositional features. The results remain
consistent with the overall structures obtained from spectral whiten-
ing, confirming the reliability of our method. However, there are
notable differences in the details between these two methods.
In the green-boxed area shown in Figure 19, our method maintains

a high S/N. It sharply delineates the boundaries between geologic fea-
tures, facilitating a deeper understanding of the sedimentary environ-
ment. In contrast, these distinctions are not sufficiently pronounced by
spectral whitening. Moving to Figure 20, the effectiveness of our
method becomes even more evident as it goes deeper. As the green
boxes indicate, our method detects subtle changes in facies that are
less discernible in the original time slices. The enhanced time slices
provide more precise visualizations and identifications of critical

Figure 18. Magnified comparative analysis of crossline = 1300 profile. (a) Original LR data, (b) results by spectral whitening, and (c) results
by the proposed method. As indicated in the green box regions, our approach provides a more precise delineation of geologic boundaries than
spectral whitening, which introduces discontinuities.

Figure 19. Enhanced resolution results at time slice of time =
1420 ms. (a) Original LR data, (b) results by spectral whitening,
and (c) results by the proposed method. The green box highlights
that our method more effectively characterizes sedimentary boun-
daries with a higher S/N than spectral whitening.
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depositional features, which is crucial for a comprehensive under-
standing of reservoir heterogeneity. This refined detection capability
ensures a more accurate and detailed representation of the subsurface,
affirming our methodology as a valuable tool for advanced geophysi-
cal analysis and effective reservoir characterization.
Figure 21 shows a comparative multitrace amplitude spectrum

analysis. Spectral whitening and network methods significantly
enhance the high-frequency components of the original LR data.
They extend the effective bandwidth similarly while preserving
the low-frequency components. However, the network aligns more
closely with the original data than spectral whitening at the lower
frequencies. Particularly approximately 15 Hz, our results follow
the original amplitude decrease, capturing more detailed informa-
tion without compromising signal quality. In contrast, spectral
whitening smooths the spectrum, potentially distorting key low-fre-
quency components.
We perform a well-log tie analysis to assess our approach’s

effectiveness. For this analysis, statistical wavelets are extracted
from nine neighboring traces within a time window of 1.0 to 1.4 s,

capturing the target layer of interest. In Figure 22a, the original seis-
mic data exhibit strong alignment with the synthetic data, achieving
a cross-correlation coefficient of 0.822, which confirms a reliable tie
to the well log. Although spectral whitening (Figure 22b) enhances
visual resolution, it yields a lower crosscorrelation of 0.689, indi-
cating moderate accuracy and some misalignment with the well-log
data. In contrast, our proposed method (Figure 22c) achieves a
crosscorrelation of 0.766, demonstrating improved alignment with
the well-log data compared with spectral whitening. A visual com-
parison further reveals that our approach resolves subtle layers that
are less clearly defined in LR data, offering a more detailed repre-
sentation of complex geologic structures. These quantitative find-
ings, along with the observed qualitative improvements, establish
our method as a valuable tool for seismic resolution in this challeng-
ing loess region.

DISCUSSION

Addressing challenges in crooked-line processing for
reliable HR feature extraction

The resolution enhancement achieved by our method relies
heavily on the HR features extracted from 2D crooked-line data.
Inappropriate processing of crooked-line data risks introducing am-
plitude and phase distortions, which can manifest as acquisition
footprints or false stratigraphic features. These artifacts may mis-
lead the network into amplifying errors rather than enhancing res-
olution. Therefore, careful processing of 2D crooked-line surveys is
critical to ensure accurate subsurface representation and reliable
feature extraction.

Midpoint dispersion

The nonlinear and irregular geometry of crooked-line surveys leads
to unevenly distributed midpoints, causing them to deviate from the
ideal linear geometry and disperse laterally (Nedimović et al., 2003;
Schmelzbach et al., 2007). This irregularity results in spatial sampling
inconsistencies, which can smear geologic structures, particularly in
complex subsurface regions. To mitigate these effects, trace regulari-
zation using a nonuniform Fourier transform (Duijndam et al.,
1999; Keiner et al., 2009) or other latest interpolation techniques

Figure 20. Enhanced resolution results at time slice of time=1600ms.
(a) Original LR data, (b) results by spectral whitening, and (c) results
by the proposed method. The green boxes underscore our advanced
capabilities for identifying minor depositional features, showcasing
enhanced detail and accuracy.

Figure 21. Comparison of normalized multitrace average amplitude
spectra after resolution enhancement.
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(Gao et al., 2024; Liu et al., 2024a) can be used to redistribute
traces onto a pseudoregular grid. This process reduces acquisition
footprints and enhances spatial continuity, which is critical for training
the network to recognize coherent geologic patterns and suppress
artifacts.

Cross-dip effects

Crossdip refers to geologic layers dipping perpendicular to the
survey line. The irregular geometry of crooked-line surveys causes
variations in dip orientation relative to the acquisition path, leading
to mispositioned reflectors and spurious high-frequency compo-
nents. To correct this, the 2.5D Kirchhoff migration (Jodeiri
Akbari Fam et al., 2021) can be used. This migration technique ac-
counts for azimuth-dependent velocity variations, aligning seismic
events to their true subsurface positions. By preserving the geom-
etries of reflectors, such as faults and stratigraphic boundaries, we
believe this step provides reliable HR features for CycleGAN
training.

Out-of-plane reflections

Out-of-plane reflections originate from structures outside the ver-
tical plane of the 2D survey line. In crooked-line acquisition, the
curved survey path can inadvertently capture such energy, introduc-
ing false structures (e.g., phantom reflectors). The 2.5D Kirchhoff
migration can effectively suppress these artifacts by focusing seis-
mic energy within the imaging plane. In addition, CycleGAN’s
cycle consistency loss (equation 4) helps eliminate inconsistencies
during the resolution enhancement process, further reducing the im-
pact of these artifacts.
A robust preprocessing workflow is essential to mitigate these chal-

lenges and ensure that CycleGAN learns geologically meaningful HR
features. This process includes midpoint regularization, migration cor-
rections, and artifact suppression. In addition, advanced preprocessing
techniques with iterative velocity model updating can further refine
the input data. Future research will explore optimizing acquisition
parameters, such as increasing receiver density and using broader fre-
quency sweeps, to enhance the effective bandwidth of 2D data.
Broader frequency content would raise the resolution ceiling of
our method, enabling the recovery of finer subsurface details, particu-
larly in high-attenuation regions such as the Loess Plateau.

CONCLUSION

The unique geologic structure of the Loess Plateau causes distinct
seismic wave attenuation between 3D swath and 2D crooked-line
acquisitions, generating data sets with varying resolutions. We
develop a weakly supervised framework using bidirectional Cycle-
GAN, integrating custom loss functions and data augmentation to
enhance 3D data resolution guided by 2D HR crooked-line surveys.
Ablation studies on synthetic data validate the critical roles of these
components in achieving HR outcomes. In addition, synthetic data
experiments demonstrate that our method outperforms traditional
spectral whitening and spiking deconvolution, with quantitative met-
rics showing improved S/N and PCC. Qualitatively, our method
achieves enhanced event continuity and preserves high-frequency de-
tails, mitigating the key limitations of conventional techniques. Field
data results further confirm the efficacy of the proposed framework,
showing satisfactory resolution improvements under challenging
near-surface conditions. Unlike conventional methods, which strug-
gle to recover natural high-frequency components attenuated by
geologic effects such as loess layers, our framework leverages geo-
physically grounded high-frequency information from 2D HR refer-
ences. This integration ensures the enhanced high-frequency features
are realistic and physically meaningful, bridging the resolution gap
between 2D and 3D data sets. These advancements enable more ac-
curate geologic interpretations and support safer resource explora-
tion. Future work will optimize the preprocessing of 2D crooked-
line data, extend the framework to prestack seismic data, and incor-
porate more complex geologic structures. Furthermore, we aim to
refine the network’s adaptability to broader seismic exploration ap-
plications, potentially revolutionizing the seismic exploration practice
with this innovative, weakly supervised framework.
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