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Unsupervised Diffusion Model for Seismic
Deconvolution
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Abstract— Seismic data deconvolution is vital for enhancing
resolution and accurate subsurface interpretation. Traditional
methods heavily rely on predefined assumptions that limit their
robustness to noisy data. As state-of-the-art generative models,
diffusion models excel in capturing accurate prior distributions,
which are beneficial to inversion. Moreover, diffusion models
inherently resist noise due to their training in reverse noisy pro-
cesses. Building on this foundation, we introduce an unsupervised
diffusion model for seismic deconvolution, leveraging diffusion
posterior sampling (DPS) to incorporate observed seismic data
into the sampling process to guide high-accuracy reflectivity gen-
eration. Unlike traditional single-trace approaches, our method
performs deconvolution across entire 2-D profiles, effectively cap-
turing spatial continuity. Though solely trained on synthetic data,
our method exhibits satisfactory performance when applied to
synthetic and field datasets, demonstrating strong noise resistance
and remarkable generalization capabilities.

Index Terms— Diffusion model, high-resolution seismic data,
seismic deconvolution, unsupervised.

I. INTRODUCTION

THE high-resolution seismic data are crucial for the
accurate interpretation of geological structures, and

deconvolution methods are among the effective approaches to
enhancing resolution. The method primarily depends on the
convolution model [1], where seismic records are represented
as the convolution of seismic wavelets and subsurface reflec-
tion coefficients. Deconvolution techniques improve seismic
resolution by compressing the seismic wavelet and broaden-
ing the frequency spectrum. Several deconvolution methods
have been developed based on the least-squares principle,
including predictive deconvolution [2] and minimum-phase
deconvolution [3]. However, these traditional deconvolution
methods assume that the reflection coefficients are statisti-
cally white noise with Gaussian distribution, and the seismic
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wavelet follows a minimum-phase characteristic. Although
these simplified assumptions allow for stable and causal
wavelet inverse filters, their Gaussianity yields band-limited
output, making it difficult to sharply resolve closely spaced
reflectors. Subsequently, several researchers proposed meth-
ods to address these limitations, such as minimum entropy
deconvolution, sparse-spike deconvolution, and lp sparsity
constraints. The sparse prior assumes that reflection coeffi-
cients are composed of a few isolated spikes. However, this
assumption is suitable only when the seismic records are
dominated by a limited number of strong reflections. For
these traditional deconvolution methods, inversion is typically
performed trace-by-trace (single-trace inversion), which makes
it challenging to consider the spatial correlations in seismic
data, resulting in outputs lacking spatial structure and poor
lateral continuity. Although several researchers have proposed
multitrace deconvolution methods, these methods generally
rely on adjacent traces for deconvolution. While this strategy
can improve lateral continuity to some extent, it remains
insufficient for capturing long-range contextual dependencies
effectively. Moreover, field noisy seismic data put challenges
for traditional deconvolution to recover fine details accurately.
In contrast, most intelligent deconvolution methods are data-
driven, relying on large amounts of training data to learn the
mapping relationship between inputs and outputs. In addition,
the network structure contains implicit regularizations, which
improves its robustness to noise.

In recent years, with the development of deep learning, there
has been widespread attention on applying deep learning to
seismic data resolution enhancement. Compared to traditional
deconvolution methods, deep learning methods show greater
robustness to noise because they learn hierarchical, nonlinear
representations of the data that can inherently distinguish
signal from noise. During training, deep learning models are
exposed to large datasets (often with varying noise levels),
which allows them to capture the underlying coherent patterns
of the seismic signals while filtering out localized noise.
Their nonlinear modeling capabilities further enable them to
approximate complex relationships between seismic data and
reflectivity, overcoming the limitations of linear assumptions
in classical methods. In addition, regularization techniques
such as dropout and batch normalization act as implicit
regularizers, preventing overfitting noise and steering solutions
toward geologically plausible results. In practical applications,
Chai et al. [4] used convolutional neural networks (CNNs)
for deconvolution, achieving promising results. Building on a
generalized convolution model, Gao et al. [5] applied deep
learning techniques for seismic data deconvolution, improving
its vertical resolution. Though more effective than traditional
methods, they are supervised and encounter generalization
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issues. These methods typically require retraining for different
datasets [6], [7], [8]. However, real data often lack paired
labels, which poses a challenge to their practicality.

The diffusion model [9] is a generative model that has
attracted considerable attention due to its remarkable success
in generating high-quality outputs across diverse data types,
including images, audio, and text. In contrast to the afore-
mentioned deep learning methods, diffusion models learn to
approximate the probability distribution of the target data and
exhibit desirable properties, including fixed training objec-
tives and scalability. The fixed training objective is primarily
reflected in the fact that regardless of the task, the goal remains
focused on learning noise prediction and optimizing the
variational lower bound. Scalability is demonstrated through
the flexible adjustment of model size, training computation,
and sampling steps, allowing the model’s performance to
improve smoothly with increased resources while maintain-
ing practicality. Diffusion models effectively capture prior
information by modeling the distribution of the target data,
providing significant advantages over traditional regulariza-
tion methods when solving inverse problems. This advantage
is particularly evident when processing noisy data. Unlike
simplified priors utilized in traditional approaches, diffusion
models benefit from the complex prior information they have
learned. Moreover, this approach of directly modeling the
target data distribution allows training to be conducted using
only clean reflection coefficients, eliminating the need for
paired data-reflectivity training samples. Furthermore, com-
pared to generative models such as generative adversarial
networks (GANs), diffusion models are not dependent on
adversarial training, thus avoiding training instability issues
such as mode collapse. In addition, their optimization process,
based on maximizing likelihood estimation and training a
denoiser, enables more stable convergence while rendering
them inherently robust to noise when solving inverse problems.
This architecture allows diffusion models to effectively handle
large and complex datasets, especially intricate seismic data.

We explored the potential application of diffusion mod-
els to seismic deconvolution for achieving high-resolution
results. Since diffusion models are unconditional generative
models [10], directly applying them to deconvolution could
yield reflection coefficients that do not match the observed
data. To address these issues and adapt diffusion models for
seismic data deconvolution, we introduced diffusion posterior
sampling (DPS) [11], incorporating observed data as condi-
tional information at each step of the sampling process to
guide the reverse generation process. We trained the model on
synthetic data and achieved promising results across multiple
datasets, demonstrating satisfactory generalization capability
and robustness to noise. In Section II, we introduce the
diffusion model and DPS. In Section III, we use synthetic and
field seismic data to prove the effectiveness of our method.
Finally, we conclude this article in Section IV.

II. METHOD

A. Score-Based Diffusion Model

The diffusion model is a generative model designed to
reconstruct the data following a desired distribution from

Gaussian noise data. It defines a forward process, where noise
is progressively added to the original data and represents the
generation process as the reverse of this learned noise-adding
procedure. This concept was initially introduced in [9] and
later expanded upon in [10] with the proposal of a score-based
diffusion model that utilizes stochastic differential equations
(SDE) to define the forward process.

In the forward process, given target data x0 ∼ p0, noise
is progressively added over time steps T, gradually trans-
forming the data into a simple standard Gaussian distribution
xT ∼ N (0, I). The forward process is defined as follows:

dx = −
βt

2
xdt +

√
βt dw (1)

where βt is the noise schedule of the process. According to [9],
βt is typically taken to be a linear function that increases
monotonically of t and w is the standard Wiener process. The
reverse-time SDE of (1) can be expressed as follows:

dx =
[
−

βt

2
x − βt∇xt log pt (xt )

]
dt +

√
βt dw (2)

where dt corresponds to time running backward and dw

corresponds to the standard Wiener process running backward.
Once given a time-dependent score function ∇xt log pt (xt ),

the reverse-time stochastic differential equation for the gener-
ation process can be solved. The score of a distribution can
be estimated by training a score-based model on samples with
score matching. To estimate ∇xt log pt (xt ), we use a neural
network sθ trained via denoising score matching (DSM) to
approximate

θ∗ = arg min
θ

Ext |x0,x0

[∥∥sθ (xt , t)−∇xt log p(xt |x0)
∥∥2

2

]
. (3)

By substituting sθ∗(xt , t) for ∇xt log pt (xt ) in (2), the
sampling results can be obtained recursively.

B. Diffusion Posterior Sampling

DPS [11] constrains the sampling process by integrating
observed data into the sampling iterations. The general form
of the forward model can be stated as

y = A(x)+ ϵ (4)

whereA(·) represents the forward measurement operator and ϵ

denotes the measurement noise. According to Bayes’ theorem,
we can derive

p(x| y) = p( y|x)p(x)/p( y) (5)

where the term ∇xt log pt (xt ) in (2) can be rewritten in the
form of sampling from the posterior distribution as follows:

∇xt log pt (xt | y) = ∇xt log pt (xt )+∇xt log pt ( y|xt ). (6)

The first term, ∇xt log pt (xt ), is the unconditional score term,
which depends only on the training data distribution and can
be replaced with the pretrained sθ∗ . However, the second
term ∇xt log pt ( y|xt ) is difficult to obtain directly due to
its dependence on time t , whereas we only have a direct
dependence of y on x0. To circumvent this problem, Chung
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et al. [11] propose an approximation with a theoretically
guaranteed upper bound on the approximation error

p( y|xt ) ≃ p
(

y|x̂0
)

(7)

and ∇xt log pt ( y|xt ) can be further expressed as follows:

∇xt log p( y|xt ) ≃ ζt∇xt

∥∥ y −A
(
x̂0(xt )

)∥∥2
2 (8)

where x̂0(xt ) emphasizes that x̂0 is a function of xt . The
step size is given by ζt = P/∥ y −A(x̂0)∥, where P is
a hyperparameter that controls the step size, allowing for
adjustments in the iterative process. Finally, (6) is reformulated
as follows:

∇xt log pt (xt | y) ≃ sθ∗(xt , t)− ζt∇xt

∥∥ y −A
(
x̂0

)∥∥2
2. (9)

Following [9], we predefine αt = 1− βt and ᾱt =
∏t

s=0 αs

to simplify calculations, where βt is typically set to linearly
increase from 1−4 to 0.02.

C. Seismic Deconvolution With DPS

Seismic deconvolution is the convolution of reflection coef-
ficients and seismic wavelets, which is formally consistent
with (4). Specifically, x represents the reflection coefficients, y
is the observed seismic data, ϵ denotes an unknown data error
represented as additive noise, and A(·) is also the forward
operator.

In the convolution model, no specific assumption is made
about the seismic wavelet, which may either be time-invariant
or time-varying. In this letter, the seismic wavelet is assumed
to be time-invariant, and the forward operator A(·) is repre-
sented as a Toeplitz matrix formed by the seismic wavelet,
where Ai j is given as follows:

Ai j =

{
si− j+1, i ≥ j
0, i < j

(10)

where si− j+1 refers to the (i − j + 1)th sample point of
the seismic wavelet. Therefore, we must estimate the seis-
mic wavelet in advance. The algorithm is referred to as
DeconDPS, and its algorithm flowchart is presented in
Algorithm 1.

Algorithm 1 DeconDPS
Require: T, y,A, {ζt }

N
t=1, {σt}

N
t=1

1: xT ∼ N (0, I)

2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: x̂0 ←

1√
ᾱt

(
xt + (1− ᾱt )sθ (xt , t)

)
5: x′t−1 ←

√
αt (1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂0 + σt z

6: xt−1 ← x′t−1 − ζt∇xt∥ y −A(x̂0)∥
2
2

7: end for
8: return x̂0

Fig. 1. Deconvolution of synthetic data. (a) Synthetic data. (c) True reflection
coefficient. (b) and (d) Results of FISTA and DeconDPS, respectively.

III. EXPERIMENTS

We first generated a 2-D reflection coefficient dataset of
5000 data; each reflection coefficient data size is 300 × 896,
following the style shown in Fig. 1(c). This dataset captures
features of real geological structures, including fault structures,
and horizontal and curved strata; 80% of the dataset is selected
for training. Before training, every data are randomly cropped
to 256 × 256 patches. The remaining 20% are reserved for
testing. We set T , the number of iterations in the forward
process, to 1000. The Adam optimizer [12] is selected as
the optimization algorithm with a learning rate of 1e-4.
The training phase is conducted on an NVIDIA GeForce
RTX 3090 GPU for a total of 1 000 000 steps. All subsequent
tests on synthetic and real data are conducted based on this
model. For comparative analysis, we selected the sparse spike
deconvolution method, implemented using the fast iterative
shrinkage thresholding algorithm (FISTA) [13].

A. Synthetic Data Examples

We selected a synthetic reflection coefficient with
288 traces, each containing 384 time points. A 30-Hz Ricker
wavelet is convolved with the reflection coefficient to generate
clean synthetic seismic data for testing. For the DeconDPS
method, the hyperparameter P is set to 0.3. In the FISTA
method, the regularization parameter µ = 0.05, with two
conditions for stopping the iteration: either the maximum
iteration Kiter of 500 is reached, or the convergence tolerance
falls below 10−5.

Fig. 1 shows the results of the deconvolution. For noise-free
input seismic data, both DeconDPS and FISTA accurately
reconstruct the reflectivity coefficients, achieving high detail
recovery and strong lateral continuity. As highlighted by
the green box in Fig. 1, both methods clearly display the
fault structure. In the thin-layer structure shown in the red
box, FISTA performs relatively better in the noise-free data.
Fig. 2 illustrates the normalized average amplitude spectra
across multiple traces. The figure shows that the DeconDPS
method closely matches the true reflectivity coefficients at
low frequencies. Although there is a slight decline at higher
frequencies, the overall performance remains robust, further
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Fig. 2. Multitrace normalized average amplitude spectrum.

Fig. 3. Deconvolution results under different noise levels. (a) and (d) Rep-
resent seismic data with SNRs of 18 and 9 dB, respectively. (b) and
(e) Corresponding FISTA results, while (c) and (f) present the corresponding
DeconDPS results.

validating the effectiveness of the DeconDPS method for
deconvolution.

Although the performance is satisfactory in the absence of
noise, real seismic data are inevitably distorted by noise. Dur-
ing testing with noisy data, clean synthetic data are augmented
with noise at a fixed SNR; we adopt the definition

SNR =
|| y||22

α2||n||22
(11)

where y is clean signal, α is a scalar that determines the
desired SNR, and n is sampled from a standard normal
distribution.

Seismic data with SNRs of 18 and 9 dB are introduced for
further testing, as illustrated in Fig. 3(a) and (d). For noisy
data, we increase the step size in the DeconDPS method by
setting the hyperparameter P to 0.3, Meanwhile, in the FISTA
method, we increase the regularization term to promote sparse
solutions by setting µ to 0.1. Subsequently, the FISTA method
was applied for deconvolution, and the results are presented
in Fig. 3(b) and (e). At lower noise levels, FISTA reconstructs
relatively accurate reflectivity coefficients. However, the lateral
continuity of the results is noticeably degraded due to noise.
As noise levels increase, only the stronger components are
reconstructed, while finer details are largely obscured by noise.

TABLE I
IMPACT OF DIFFERENT SNRS ON ACCURACY (dB)

Fig. 4. (a) Extracted source wavelet from the seismic data. (b) Amplitude
spectrum.

In contrast, the DeconDPS method, as illustrated in Fig. 3(c)
and (f), performs consistently well across various noise levels,
demonstrating strong robustness to noise.

To further analyze the effectiveness of the proposed method,
we performed an accuracy analysis of the sampling result.
Noisy synthetic data with different SNR values are selected
and compared with the FISTA method. To quantitatively
evaluate the results, we calculate the reconstruction accuracy

Accuracy (dB) = 10 log10
||x||22

||x − x∗||22
(12)

where x and x∗ are the true and inverted reflectivity models,
respectively. The results are shown in Table I.

As shown in Table I, at high SNR, the performance
difference between the two methods is minimal, with the
proposed method slightly outperforming FISTA. However,
as noise increases, FISTA’s performance deteriorates signif-
icantly, while the DeconDPS method demonstrates superior
robustness to noise. Even at 3 dB, the accuracy remains
relatively high with the DeconDPS method.

B. Field Data Examples

The effectiveness of the methods was subsequently validated
on a real 2-D dataset. This 2-D dataset comprised 384 traces,
each with 320 time sampling. For the DeconDPS method,
the hyperparameter P is set to 0.2, as it exhibited the best
performance after multiple tests. Considering the complexity
of real data and its distortion by noise, the regularization
parameter µ in the FISTA method is set to 0.1 to promote
sparse solutions, while all other parameters remain consistent
with previous experiments. The statistically estimated wavelet
and frequency spectrum are illustrated in Fig. 4.

The results are illustrated in Fig. 5, where (a) depicts
the real seismic data, and Fig. 5(b) and (c) displays the
results of DeconDPS and FISTA, respectively. From an
overall perspective, the DeconDPS method demonstrates sig-
nificantly better lateral continuity because FISTA performs
trace-by-trace deconvolution, whereas DeconDPS conducts
deconvolution across the entire 2-D profile. As highlighted
by the green box in Fig. 5, the fault is clearly visible in the
original data. However, the FISTA result fails to reconstruct
the fault effectively. As highlighted in the red box, channel
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Fig. 5. Deconvolution results of real data. (a) Real seismic data. (b) Results of
DeconDPS. (c) Results of FISTA. (d) Multitrace normalized average amplitude
spectrum.

Fig. 6. SNR of the results sampled with different P values.

responses are visible in the original data. DeconDPS pre-
serves these features well, outperforming FISTA in recovering
detailed information. This demonstrates that DeconDPS out-
performs FISTA in recovering detailed information. Fig. 5(d)
illustrates the normalized amplitude spectra across multiple
traces. DeconDPS significantly broadens the frequency range
of the data, confirming high-resolution results.

These results on real seismic data validate the effective-
ness of the DeconDPS method and underscore its potential
for broader applications in deconvolution techniques. The
success of DeconDPS in processing both synthetic and real
data, despite being trained exclusively on synthetic examples,
highlights its strong generalization capability and potential for
broader applications in seismic data processing.

C. Discussion

1) Different Hyperparameters: As shown in (8), the pro-
posed method has only one hyperparameter, P , making its
selection a key factor influencing the sampling results. To fur-
ther illustrate this, we performed a sensitivity analysis on the
hyperparameter P using noisy data with an SNR of 18 dB.
The result is presented in Fig. 6. It shows that there is an
optimal value P that yields the best performance. In practice,
we empirically select a value for P , typically set to 0.3, and
fine-tune it during testing to achieve optimal performance.

2) Computational Efficiency: We performed a single sam-
pling on 288 × 384 data using an NVIDIA GeForce
RTX 3090 GPU and compared the runtime and GPU mem-
ory usage with those of another deep learning method
(DDNM [14]). The FISTA method is executed on the CPU.
The results are shown in Table II. Due to the gradient calcula-
tion required at each step, DeconDPS consumes more memory
and time than DDNM. However, because of the inherently

TABLE II
COMPARISON OF INFERENCE TIME AND MEMORY USAGE

high computational cost of diffusion models, the runtime for
both methods significantly exceeds that of the FISTA method
even though the latter is executed on the CPU. Therefore, our
future research will focus on accelerating the sampling process
to reduce inference time.

IV. CONCLUSION

We reconstruct the reflection coefficients using a diffu-
sion model. To address the issue of nonuniqueness in the
generation of unconditional diffusion models, we introduced
the DPS method that integrates prior information by sam-
pling from the posterior distribution, thereby guiding and
constraining the generated results. This approach does not
require paired training data; instead, it only requires syn-
thetic reflectivity coefficients that incorporate as much realistic
subsurface information as possible. Both synthetic and real
datasets demonstrate the effectiveness of the proposed method,
highlighting its strong robustness to noise and remarkable
generalization capabilities. These results also demonstrate that
the DeconDPS method requires only a single pretraining
step and the tuning of one hyperparameter to achieve robust
performance across different datasets.
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