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Accelerating Seismic Dip Estimation
With Deep Learning
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Abstract—The seismic volumetric dip is a crucial seismic
geometric attribute, which can provide useful information for
assisting subsequent processing and interpretation. Waveform
similarity scanning-based dip estimation (WSSB) delivers reliable
dip estimation but encounters problems of expensive computa-
tion. To improve computing efficiency, we use multitask deep
learning to simultaneously estimate the inline dip and crossline
dip directly from a 3-D field seismic dataset. Our method
considers dip estimation as a regression problem and trains
a multilayer convolutional neural network with dual-channel
output. It aims to output continuous values of seismic apparent
dip from two directions simultaneously. To train the network,
we propose an effective and efficient workflow to create a training
sample dataset, which consists of field seismic cubes and the
corresponding dip labels estimated by WSSB. After training,
the network automatically learns how to extract rich and proper
features that are important for dip estimation. By sliding the
extraction window within the full 3-D seismic data, the network
can output many overlapping dip cubes that are stacked to get
two complete 3-D volumes of seismic dip. The final results of
dip estimation by our method are similar to those by WSSB.
We further demonstrate the accuracy of our approach by
comparing the structural curvature. However, the computation
time of our method is much less than that of WSSB. The proposed
method can accurately estimate seismic volumetric dips with high
computational efficiency.

Index Terms— Convolutional neural network (CNN), deep
learning, dip estimation, seismic attribute, similarity scanning.

I. INTRODUCTION

EISMIC attributes play an important role in seismic
S structural interpretation, stratigraphic analysis, dynamic
reservoir detection, reservoir characterization, and modeling.
They can be roughly divided into two categories, i.e., geomet-
ric attributes and physical attributes [1]. Geometric attributes
are general tools in seismic graphic interpretation, such as
identification of fault orientation and channels. As one of the
representative geometric attributes, seismic volumetric dip can
not only be used to identify subtle structures but also identify
valuable geological information for seismic processing and
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interpretation, such as seismic curvature and structure-oriented
filter. Therefore, estimating the seismic volumetric dip is a
subject worthy of study.

Many scholars have proposed different methods to estimate
seismic volumetric dip. Cross correlation-based methods are
the first category. Bahorich and Farmer [2] utilized cross
correlation over a fixed length windowed seismic data to
calculate seismic volumetric dip and found it can better
image the submarine fan. The complex trace analysis-based
methods are the second category. Barnes [3] calculated the
temporal and spatial partial derivatives of the instantaneous
phase using the complex seismic trace analysis theory and
then calculated instantaneous dip angle and instantaneous
azimuth angle. To reduce the influence of amplitude lateral
variation on the estimation results, Barnes [4] applied a smooth
weighted average window to smooth the instantaneous phase.
Waveform similarity scanning-based dip estimation (WSSB)
methods are the third category. Milkereit [5] divided verti-
cal seismic profiles into localized windows and calculated
seismic apparent dip in each window using the localized
slant stacks. Marfurt ef al. [6] measured seismic coherency
to estimate seismic dips by calculating semblance between
the windowed seismic traces along with a series of preset
dips and selected the dip with the highest semblance value
as the local reflector’s dip. Marfurt et al. [7] also applied the
eigenstructure coherence algorithm to dip scanning. Gradi-
ent structure tensor-based methods are the fourth category.
After calculating the 3-D seismic signals’ gradient within
a fixed-size window and constructing a covariance matrix,
seismic volumetric dip can be estimated by the dominant
eigenvectors of the covariance matrix [8], [9]. Among the
above methods, the WSSB dip estimation can result in one
reliable dip estimation if the user-defined increment of dis-
crete candidate dip is small enough. However, computation
costs increase with a small dip scanning interval. Therefore,
we should consider defining a suitable interval of dips and
balancing the accuracy and consuming time for the whole
seismic survey for the successful WSSB dip estimation.

Deep learning has a powerful ability to extract complex
features and has been successfully applied to solve many
image processing problems, such as classification [10], tar-
get recognition [11], and human action recognition [12].
Recently, deep learning has been introduced to solve prob-
lems in seismic processing [13]-[15] and interpretation [16].
The regression model, patch-based classification methods, and
the encoder—decoder segmentation model are the three main
methods. The regression model, whose output size is the same
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as the input size, is widely used in seismic noise suppression.
However, it was rarely used in dip estimation because its out-
put boundary values are ambiguous due to the lack of sufficient
input signals. Patch-based methods, which output the predicted
central voxel of the input seismic patch, have been applied
to salt interpretation [17] and fault detection [18]. However,
their results are suboptimal compared to encoder—decoder
segmentation models, especially when the output voxel is at
the intersection of the two different categories. Besides, the test
stage is computationally intensive. Encoder—decoder segmen-
tation models, which have the same high calculation efficiency
as the regression model, are famous for fault segmentation.
However, they also encounter some drawbacks. As part of the
input information is lost due to downsampling, their output
resolution will be affected. Besides, they cannot accurately
output a broad number of segmentation categories, thus not
meeting the needs of high-resolution dip estimation whose
classification categories can reach more than 1000.

In this letter, we propose to apply a deep regression model
to estimate 3-D seismic dip automatically. The dip estimation
ability of the seismic dip estimation convolutional neural net-
work (SDE-CNN) is learned from training samples. To make
the network obtain a high-precision dip extraction ability,
we use WSSB with a small scanning interval to obtain high-
resolution labels. WSSB estimates each voxel of dip labels
from seismic data within a fixed window, allowing us to cut
the training data into small subvolumes to facilitate network
training and reduce GPU memory usage. Besides, to make the
voxels at the output boundary have enough input information,
we make the network output size smaller than the input size.
We also notice that inline dip and crossline dip are coupled
with each other during the scanning processing, and they are
both estimated from seismic structural features. Therefore,
we adopt multitask learning [19] to simultaneously perform
dip estimation tasks in two directions. In this way, we can fur-
ther reduce the consuming time of dip estimation. In Section II,
we introduce the model formulation, training datasets, network
architecture, and training strategy. In Section III, we use field
seismic data to prove the effectiveness and efficiency of our
method. Finally, we conclude in Section IV.

II. METHOD
A. Model Formulation and Training Datasets

In order to leverage the promising progress in multitask
learning, particularly based on the deep neural networks,
we propose to combine the inline dip estimation task and
the crossline dip estimation task in the unified multitask
framework aiming to jointly learn the shared features and
task-specific features to reduce the total testing time. The total
loss of multitask learning is the sum of the weighted losses of
the multiple tasks as follows:

T
LO) = wLi(0,0) (1

i=1
where T denotes the number of the tasks; here, T = 2. ©;

is the parameter corresponding to each special task, and ®' is
the sharing parameters between them. ® = {®’, Oy, ..., Or}
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are the set of network parameters to be optimized by mini-
mizing L. w; is the weight of each task and determined by
its importance in the holistic networks. In particular, when
w; =1 and w, = 0, this multitask learning method is equal
to a single-task method for inline dip estimation, while w; = 0
and w, = 1 are degraded as a single-task method for crossline
dip estimation.

As analyzed in Section I, we treat each SDE problem as
a regression problem rather than a classification problem to
meet the requirement of accuracy and speed at the same
time. We denote the original 3-D seismic data volume as U,
the inline dip volume, and crossline dip volume as D; and
D, respectively. Since conventional methods always estimate
the seismic apparent dip using one sliding window, we do
not need the whole seismic volume but local 3-D seismic
cubes of training datasets for network training. Therefore,
we cut them into overlapping subvolumes and construct the
set of training sample pairs {U/, D{, D3}}_,, where N is the
total number of samples, U/ e R and D{ and D% IS
R > x1" (n' < p to ensure sufficient input information). With
respect to each task, we assume a direct mapping function
hi(U’; ®,0,) :U — D; to map the input original seismic
data to seismic apparent dip. The procedure for each task is
shown in Fig. 1. The loss function of each task that we used
is given as follows:

1 & : .
£i(0.0;) = 50> |mi(v:©.0)) - DL @
j=1

L;(0', ©;) is used to measure the mean square error (mse)
between the target dip label and the network predicted dip.

To obtain high-quality dip labels, we use the most reliable
conventional method, WSSB dip estimation, to compute the
seismic apparent dip. The 3-D seismic volume after migration
can be indicated by u(z, x, y), where ¢, x, and y are time,
inline, and crossline coordinates, respectively. To get the robust
results of dip estimation against noise, we use the Hilbert
transform to obtain the image part u’’(¢, x,y). By sliding
the analysis window, we can compute every central point
(t,x,y)’s waveform coherence [20] as (3), shown at the
bottom of the next page.

Here, M denotes the half-window size in the time direction,
J is the number of seismic traces in the analysis window, H
denotes the Hilbert transform, and 6, and 0, € [—0Omax, Omax]
are the preset dip indexes along inline and crossline directions,
respectively. We can obtain a series of values of coherence
over discrete apparent dip pairs (6, 0,) and choose the dip
pair that maximizes the coherence as the apparent dip of the
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analysis point. To further improve the apparent dip, on the
one hand, we adopt a small dip scanning interval at the
cost of heavy computation. On the other hand, following
Marfurt and Kirlin [20], we fit a 2-D paraboloid through
the nine discretely sampled points neighboring the point with
maximum coherence.

B. Network Architecture

Both estimation tasks of inline dip and crossline dip involve
analyzing geometric features in the 3-D seismic data. We use a
fully convolutional network to simultaneously extract features
of seismic inline dip D; and crossline dip D, from the input
seismic cube U. Fig. 2 shows the specific architecture of our
network. We adopt a direct mapping architecture rather than
residual learning because the magnitude difference between
network input and output in our task is enormous, while
residual learning is easy to learn small amplitude changes. Our
network adopts a hard parameter sharing structure. It consists
of four stages: the first two stages are shared layers that extract
common features, and the last two stages are two branches
of task-specific layers, which computes two outputs of an
inline dip and a crossline dip. The first stage is an input
layer composed of one convolutional layer and one activation
function. Similar to the parameter setting in [21], we have
64 convolutional kernels, and their sizes are 3 x 3 x 3.
The 3-D convolutional kernels can capture more structural
features of seismic data than 2-D kernels. We also delete
all pooling layers to keep the output size the same as the
input size. The rectified linear unit (ReLU), which helps solve
the vanishing gradient problem and prevent overfitting, is set
as the activation function. The second stage is composed of
seven convolutional layers. Unlike the input layer, each of
them is followed by a batch normalization (BN) layer before
activation. The BN is used to accelerate training convergence
and improve the accuracy of dip estimation. The common
features extracted by shared layers are delivered to the two
branches to implement specific dip estimation tasks. The third
stage has a dual-channel structure and has more convolutional
layers up to 10. In the convolution calculation process, padding
the boundary is necessary to allow the data on the boundary
to participate in the convolution calculation as a center. There
are many kinds of padding operations, such as zero padding,
symmetric boundary padding, and periodic padding. In this
stage, we chose a different padding method from the previous
same paddings. Valid padding [22] keeps the filter window
staying at a valid position inside the input map and shrinks
output size. We adopt valid padding at intervals to reduce the
size of network output. Reducing the network output ensures
that the voxels on the output boundary also have enough
corresponding receptive fields. In other words, the ambiguity
of the network output on the boundary can be reduced in this
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Fig. 2. Deep neural network with shared convolutional layers and task-
specific layers.

way. The last stage is the output layer, which only has one
convolution layer to output seismic apparent dips’ values.

C. Network Training

We train the network by minimizing the network’s total
loss in (1) through gradient-based optimization algorithms.
Parameters of shared layers are learned jointly together, and
parameters of task-specific layers are learned using an alternat-
ing minimization scheme. The task-specific layers consisting
of two branches are, respectively, dedicated to tasks of inline
and crossline dip estimation. The weight of each task is a
crucial hyperparameter in multitask learning. We notice that
the two branches have almost identical structures, and their
output ranges are the same. In other words, their gradients
need to be backpropagated with the same impact on the
shared layers. Therefore, we adopt the static update method to
facilitate the training process, which sets the weights w; = 0.5
and w, = 0.5 manually before the training of the networks,
and they are fixed during the whole training of the network.

III. DATA EXAMPLES

We evaluate our method on two 3-D field seismic datasets
originating from the same survey acquired by Daqing Oilfield.
The first dataset has 681 lines with a spacing of 20 m and
401 traces with a spacing of 20 m. The time sampling point
is 501 with a l-ms sampling rate. We first construct the
relatively high-quality training dataset and use the WSSB dip
estimation to estimate the seismic apparent dips along with the
inline and crossline directions. We set the dip searching range
[—Omax> Omax] as [—4, 4] with a small dip searching interval
of 0.125 to increase dip resolution. The first 150 lines of the
original seismic data are designated as the training volume,
while the first 150 lines of the estimated dips are selected
as the corresponding ground-truth labels. Then, we use a
fixed-size sliding window with 50 x 50 x 50 voxels and a
stride of 20 to sequentially cut the training volumes into over-
lapping subvolumes, as shown in the smaller boxes of different

(3)
J Zrlzw:fM{ZJJ:l [” (t —n—0Oxj — eyyj')]z + ZJJ'=1 [”H (t —n—0Oxj — eyyj')]z}
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Fig. 3. First dataset’s time slices of (a) WSSB dip estimation result, (b) our
trained network result, and (c) difference between (a) and (b).

colors in Fig. 3(a). Thus, we constructed 8190 training sample
pairs. After feeding these training sample pairs, the network
will automatically update the parameters and learn feature
representation for estimating seismic apparent dip from the
raw seismic dataset. Finally, we use the well-trained network
to estimate the apparent dip of the rest 531 lines, and the
network simultaneously computes the inline and crossline dip.

First, we compare the calculation efficiency of WSSB dip
estimation with our method. When we estimate the seismic
apparent dip using the WSSB dip estimation, the parameters’
set is consistent with those of constructing training labels, that
is, the dip searching range is [—4, 4] and the dip searching
interval is 0.125. The WSSB is computationally intensive.
To reduce the calculation time as much as possible, the pro-
gram is implemented in C++ and run on a workstation
with the following specifications: an Intel Xeon E5-1620 v3
@ 3.50 GHz and 32-GB RAM. This program also employs
multithreading to realize parallel computing with four cores,
and the total consuming time of WSSB dip estimation is 4.7 h.
When we use the well-trained network to the same 3-D dataset
using one GPU (GeForce GTX 1080Ti), we cut the full 3-D
seismic data into overlapping cubes and stack two full 3-D
volumes of seismic dips after estimating each cube with the
network. The total consuming time is about 6 min, which is
greatly shortened. Therefore, our SDE-CNN is more efficient
than the commonly used WSSB dip estimation.

Then, we compare the results of dip estimation on a time
slice in Fig. 3. For the sake of saving space, only results of
inline direction are displayed. Fig. 3(a) and (b) shows two
time slices of dip estimation results based on the conven-
tional method and our trained SDE-CNN, respectively. Except
for the area near the data boundary, there is no significant
difference between the WSSB dip estimation results and the
dip estimation result based on our trained network. Moreover,
we notice that our method is superior to the conventional
method in some regions because Fig. 3(b) (the result of our
trained SDE-CNN) has a more accurate and sharper channel
edge, as indicated by the orange ellipse. To further evaluate our
method’s estimation accuracy, we also calculate the difference
between the WSSB dip estimation’s result and our result.
Fig. 3(c) shows the time slice of the difference cube. Although
there is some visible difference neighboring some big faults,
the rest regions’ errors are tiny. We speculate that the limited
dip searching range caused the visible difference near the big
fault.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

BEEZESEREEEEEIEIE

Linenumber
H
[t

E § &

§ § & § 8
= = Tracenumber

“ Tracenumber “ Tracenumber

g & & B
‘Tracenumber

Fig. 4. First dataset’s time slices of the most negative curvature based on
(a) WSSB dip estimation and (b) our trained network result, and two time
slices of the most positive curvature based on (c) WSSB dip estimation and
(d) our trained network result.
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Fig. 5. Second dataset’s time slices of (a) WSSB dip estimation result,
(b) our trained network result, and (c) difference between (a) and (b).
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Fig. 6. Second dataset’s time slices of the most negative curvature based
on (a) WSSB dip estimation and (b) our trained network result, and two time
slices of the most positive curvature based on (c) WSSB dip estimation and
(d) our trained network result.

The structural curvature, which can be obtained by calcu-
lating the partial derivatives of apparent dips, plays a vital
role in exploring and developing complex structural reservoirs.
To test our network’s performance in detail, we calculate the
structural curvature based on the estimated dip of WSSB and
our proposed method, respectively. The corresponding slices
of the most negative curvature and the most positive curvature
are shown in Fig. 4. We can also observe that our network can
generate curvature results comparable to the curvature results
based on WSSB dip estimation except for the region near the
boundary.

To further test the network’s generalization performance,
we estimate dips of another dataset that has 650 lines,
430 traces, and 1001 time samples without retraining the
network. Spatial dimensions and the time sampling rate are the
same as the previous dataset. The blue lines in the upper left
corner of Fig. 5 indicate the location relative to the previous
dataset. The results of dip estimation and structural curvature
are shown in Figs. 5 and 6, respectively. We can see that
our results are very close to the results of WSSB. In other
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words, the network is universal for datasets belonging to the
same work area. However, the network’s consumption time
of 12.5 min is far less than 7.5 h of WSSB, which shows that
the network can significantly reduce the dip estimation time
of the same work area. In summary, our network obtains the
ability to output reliable dip estimation results after learning
the training samples.

IV. CONCLUSION

We propose a seismic apparent dip estimation method based
on deep learning. A multitask convolutional regression model
is introduced to simultaneously map the poststack seismic
dataset to inline dip and crossline dip. We have also carefully
designed the network architecture, and the network is trained
and tested on the field seismic dataset. Compared with the
conventional dip estimation method, our well-trained network
can significantly save the computing time and provide satis-
factory and comparable results of dip estimations except for
the boundary area.

In addition, there are two issues that need further study. One
issue is to reduce the training time. We used four GPUs to train
the network in parallel for 18.92 h. Although the network test
is computationally efficient, only when the seismic survey area
is large or the dip resolution is high, the network, including
the training time, has obvious advantages over the traditional
method. The other issue is that the network generalization
between different work areas is poor. We think that transfer
learning is a powerful tool to help solve these two issues.
Transfer learning refines the network to be adapted to seis-
mic data from other work areas, reducing training time and
improving generalization.
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