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A dictionary learning method with atom splitting for seismic footprint

suppression
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ABSTRACT

The acquisition footprint causes serious interference with seis-
mic attribute analysis, which severely hinders accurate reservoir
characterization. Therefore, acquisition footprint suppression has
become increasingly important in industry and academia. We
have assumed that the time slice of 3D poststack migration seis-
mic data mainly comprises two components: useful signals and
the acquisition footprint. Useful signals describe the spatial dis-
tributions of geologic structures with local piecewise smooth
morphological features. However, the acquisition footprint often
behaves as periodic artifacts in the time-slice domain. In particu-
lar, the local morphological features of the acquisition footprint in
marine seismic acquisition appear as stripes. Because useful sig-
nals and the acquisition footprint have different morphological
features, we can train an adaptive dictionary and divide the atoms
of the dictionary into two subdictionaries to reconstruct these two

components. We have devised an adaptive dictionary learning
method for acquisition footprint suppression in the time slice
of 3D poststack migration seismic data. To obtain an adaptive
dictionary, we use the K-singular value decomposition algorithm
to sparsely represent the patches in the time slice of 3D poststack
migration seismic data. Each atom of the trained dictionary rep-
resents certain local morphological features of the time slice. Ac-
cording to the difference in the variation level between the
horizontal and vertical directions, the atoms of the trained diction-
ary are divided into two types. One type significantly represents
the local morphological features of the acquisition footprint,
whereas the other type represents the local morphological fea-
tures of useful signals. Then, these two components are recon-
structed using morphological component analysis based on
different types of atoms, respectively. Synthetic and field data ex-
amples indicate that our method can effectively suppress the ac-
quisition footprint with fidelity to the original data.

INTRODUCTION

Acquisition footprint refers to the noise component in 3D seis-
mic data that is highly correlated to seismic acquisition and
processing (Marfurt et al., 1998). This component tends to
“mirror” parts of the acquisition geometry in the lateral deploy-
ment of sources and receivers, which are used to acquire seismic
survey data (Chopra and Larsen, 2000) and manifest inline or
crossline striation in a given time slice. The acquisition footprint
masks real amplitude anomalies for stratigraphic interpretation,
amplitude-variation-with-offset (AVO) analysis, and reservoir
attribute studies (Marfurt et al., 1998), thereby making data inter-
pretation problematic.

The causes of acquisition footprints vary and can generally be
categorized into two groups (Drummond et al., 2000). One type

of footprint is related to the design of the acquisition geometry, in-
cluding the distribution of source and receiver lines. Irregular offset
and azimuth distribution belong to this type of footprint problem,
and the resulting acquisition footprint is usually a periodic coherent
noise. The other type of footprint arises from signal processing
problems such as aliased noise leakage when attenuating ground
roll or multiples, incorrect velocities when applying normal move-
out, and AVO effects.

An essential method for suppressing footprint is selecting ap-
propriate field parameters and designing optimal acquisition
geometry. However, carrying out these approaches is typically
costly in practice. The data volumes of the poststack data are
greatly reduced compared with the originally recorded data from
the acquisition step (prestack data). Many researchers aim to
suppress the acquisition footprint when processing poststack data.
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Filtering methods are the most commonly used and can be
classified into two categories: filtering along with slices of seis-
mic data and structure-oriented filtering (Davogustto and Marfurt,
2011). In the first class, the k-k, filter (Falconer and Marfurt,
2008) and the truncated singular value decomposition (TSVD)
filter (Al-Bannagi et al., 2005) have been applied to suppress
the acquisition footprint in time slices. However, the k.-k, domain
filtering method would cause some distortion to the useful sig-
nals, and the spatial coherence of the acquisition footprint makes
the singular value decomposition (SVD)-based method less
effective. In the other class, scholars used a smoothing operation
parallel to the reflector dip and azimuth unless a significant dis-
continuity exists (Fehmers and Hocker, 2003), thus suppressing
the acquisition footprint effectively as it changes with depth. G6-
mez and Velis (2019) further examine the attenuation perfor-
mance of structure-oriented filtering in the frequency domain
and show that it improves the lateral continuity of events. In ad-
dition, the wavelet transform (Alali et al., 2018) has also been
used to suppress the acquisition footprint. Yu et al. (2017) use
a 3D complex wavelet transform to suppress the acquisition foot-
print and other random noise on prestack gathers. However, a sin-
gle method rarely yields a good result, and a combination of
methods is recommended (Davogustto and Marfurt, 2011).
Starck et al. (2004, 2005) present the theory of morphological
component analysis (MCA) and decompose images into textural
and natural additive ingredients. MCA provides a complete rep-
resentation of the content of an image and has been applied in
a wide range of fields such as image inpainting (Elad et al.,
2005), image superresolution (Shen et al., 2010), and image
denoising (Yong et al., 2009). In addition, the MCA method
has been widely applied in seismic data processing because seis-
mic data can be described as a linear superposition of multiple
basic waveforms with different morphological features (Chen
et al., 2017). Here, the term “morphology” refers to the geometric
structures of seismic signals in the spatial dimension. A funda-
mental consideration in using the MCA method is the choice
of overcomplete complex waveform dictionaries, which can be
used to sparsely represent signals under different practical prob-
lems. The overcomplete dictionaries can be divided into two main
categories: predetermined dictionaries and adaptive dictionaries.
Many linear transforms have been chosen as the predetermined
dictionaries and have facilitated rapid numerical implementation
for sparse seismic data. Yarham et al. (2006) use various methods
to estimate the ground roll and separate the ground roll from the
recorded signals by exploiting the curvelet transform domain,
which represents the ground roll sparsely while preserving reflec-
tor information. Wang et al. (2011) construct an overcomplete dic-
tionary in MCA with the 2D undecimated wavelet transform and
curvelet transform to extract sedimentary features from seismic
data. Based on the coherency of reflective events, Wang et al.
(2012) propose a data-adaptive ground-roll attenuation method
using the stationary wavelet transform (SWT), which can play
the role of a discriminant between ground-roll and reflection
waveforms. Based on the morphological divergence between
ground-roll and body-wave signals, Chen et al. (2013) present
a ground-roll noise attenuation method with 1D SWT for
the ground roll and local discrete cosine transforms for the body
waves. To suppress ground roll, Chen et al. (2017) construct
dictionaries that can represent body waves and ground-roll

sparsely using tunable Q-factor wavelet transforms with a low
Q-factor and a high Q-factor. Each predetermined dictionary
has its own merits, but none can represent all features completely.
Adaptive dictionaries based on learning comprise a different route
for designing dictionaries and are optimally adapted for sparsely
representing signals. Olshausen and Field (1996) propose a con-
struction dictionary strategy with an unsupervised learning algo-
rithm subject to maximizing sparseness coding for natural images.
The K-singular value decomposition (K-SVD) is an important dic-
tionary learning algorithm for creating a dictionary for sparse rep-
resentations. Rubinstein et al. (2010) use an efficient K-SVD-like
algorithm to learn sparse dictionaries, and the algorithm provided
better generalization. Turquais et al. (2017) extract a redundant
dictionary by learning the morphological diversity using the K-
SVD algorithm. Then, they divide the dictionaries into noise
and signal subdictionaries according to a statistical classification
to suppress coherent noise in the raw shot gather from a marine
seismic data set via MCA. However, they require a noise-only
model or a pure signal model to segregate the atoms, and the wide-
spread spatial distribution of the footprints cannot meet this re-
quirement. In a follow-up study, Gémez and Velis (2020) use
an atom filtering method to classify atoms in the dictionary, hence
suppressing the footprint. To summarize, with the purpose of us-
ing adaptive dictionaries to remove coherent noise, the basis of
this approach is to divide dictionaries into two appropriate subdic-
tionaries: one for the representation of coherent noise and the other
for the useful signals.

In this paper, we present a local MCA method with an adaptive
dictionary to suppress acquisition footprint in the time slices of 3D
poststack migration seismic data. In the proposed method, we di-
vide the time slice into many patches and train an adaptive diction-
ary to decompose each patch linearly. The adaptive dictionary aims
at finding a sparse representation of the input data. In other words,
the minimum number of atoms used to linearly approximate the
patches is very small. In practice, solving the sparse dictionary
learning problem can be performed using the K-SVD algorithm
(Aharon et al., 2006). After the K-SVD algorithm, the dictionary
is a matrix comprising atoms that represent different morphological
features.

In addition, we propose a method for classifying the atoms of the
sparse dictionary into two classes by examining their morphological
features. It is necessary to add that there are additional options for
suppressing other kinds of noise by third or more atom classifica-
tion. Here, two classes are mainly concerned with the suppression
of the footprint. Once we obtain atoms representing the footprint
patterns, we can use them to reconstruct the footprint component
and obtain the denoised result by subtracting the footprint from
the input. The local morphological features of the acquisition foot-
print and the useful signals are significantly different. In the time
slices, the local morphological features of the acquisition footprint
appear as thin stripes extending approximately along the inline or
crossline direction. However, the local morphological features of
the useful signals appear as curve-like structures (that describe
the geologic body or geologic structure such as a channel or fault)
or piecewise continuous (that represents stable sedimentary strata).
Each atom of the dictionary represents one kind of local morpho-
logical feature of the time-slice data. Therefore, we assume that the
atoms representing the local morphological features of the acquis-
ition footprint vary slowly along the horizontal or vertical direction
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and vary rapidly along the other orthogonal direction. However, the
atoms for representing the local morphological features of useful
signals vary slowly in both directions.

The time slice of 3D poststack migration seismic data can be
modeled as a superposition of the acquisition footprint component,
useful data component, and random noise. Here, random noise in-
dicates a component that has little or no correlation to the atoms and
cannot be represented sparsely by the dictionary. To date, several
studies have investigated the textural attributes for seismic data clas-
sification (Vinther et al., 1995; Vinther, 1997; West et al., 2002;
Gao, 2003). Subsequently, textural attributes are used to classify
MCA atoms (Turquais et al., 2017). In this study, we classify
the atoms in a similar manner. Based on these differences in direc-
tional variation among the atoms, a parameter of the atoms called
the directional variation difference (DVD) is presented and used to
classify the atoms into the two categories. With a threshold of DVD,
the sparse dictionary can be split into two subdictionaries: one con-
sisting of atoms representing local morphological features of the
acquisition footprint, and the other consisting of atoms representing
local morphological features of the useful signals. According to lo-
cal MCA theory (Elad, 2010), the atoms in the former subdictionary
can be used to reconstruct the acquisition footprint component of
each patch, and the atoms in the latter subdictionary can be used to
reconstruct the useful signal component of each patch. The error of
the linear approximation of the patch can express random noise be-
cause random noise does not have regular local morphological
features.

The remainder of this paper is organized as follows. First, the
theory and methodology are presented. Then, two applications of
our theory are discussed. The acquisition footprint noise is removed
from the time slices of a synthetic data set and a 3D poststack mi-
gration seismic data set from a marine acquisition geometry.

METHODS

The proposed method is composed of three steps: learning dic-
tionary construction, atom classification, and reconstruction. The
three steps are presented in the following subsections.

Learning dictionary construction

Following Gao et al. (2016), a time slice d of 3D poststack mi-
gration seismic data (e.g., shown in Figure 1) is modeled as a super-
position of useful signal components s, acquisition footprint
components f, and random noise n (to facilitate mathematical ex-
pression, all 2D slices of seismic data are reorganized as column
vectors in this section) as follows:

d=f+s+n M

One patch of d is denoted by p;, where [ represents the location of
the patch. Each patch is a local part of d and can be obtained by

p; =R, )

where the matrix R; is the operator to split out the patch at the /th
location of the corresponding data. The patches are analyzed with
local MCA (Elad, 2010), which is an application of the adaptive
dictionary-based sparse representation theory.
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We denote matrix A as the dictionary, which can sparsely linear
approximate each patch of the time slice data, and each column of
A is an atom of the dictionary A. The term x; denotes the coef-
ficient vector to linearly approximate the patch at the /th location
of the time-slice data with the dictionary A. According to the def-
inition, A and x; can be solved by optimizing the dictionary A and
coefficient vector x using the K-SVD algorithm (Aharon et al.,
2006):

L
{A{x}f,} =arg min > |Rd - Ax|[}}

Av{xl}[zl =1 (3)
st |Ixilo £ T, 1<I<L,
where L is the total number of the patch location; || - ||, is the

?y —norm, which counts the total number of nonzero elements
of a vector; ||x;||, is the number of the nonzero elements of x;;
and T is the sparsity level, which is the upper bound of the atom
number to linearly approximate each patch. Equation 3 indicates
that each patch of the time slice data d can be linearly approxi-
mated by relatively few of the dictionary atoms A. In other words,
equation 3 imposes a constraint on each atom to represent a certain
basic morphological feature across different patches. Thus, all
atoms form a collection of local morphological features of the time
slice data d, which are mixtures of useful signals and footprint
patterns.

Equation 3 is nonconvex with regard to {A, {x,}-,}. To stably
solve this problem, an optimization method based on the block-co-
ordinate descent has been proposed to split the dictionary learning
problem into two simpler subproblems. Each subproblem can be
easily solved with respect to a single variable by assuming that
the other parameters are known.

We first assume that the dictionary A is known. The subproblem
of finding the sparse coding coefficients {x;}} | is a classic prob-
lem:

x; =argmin||Rd—Ax,||3 s.t.||x;]|o<Ty, 1<I<SL, 4)
Xy

where R; is the sampling operator used to extract and vectorize the
patch from d. Many algorithms, such as iterative soft thresholding
(Daubechies et al., 2004) and the interior-point solver (Chen et al.,
1998), can be used to solve the problem. We use the orthogonal
matching pursuit method (Pati et al., 1993) to approximate the
solution because it achieves suitable calculation speeds with high
accuracy. In addition, choosing a suitable initial dictionary helps
obtain the desired solution. We chose the 2D redundant discrete
cosine dictionary (DCT) as the initial dictionary in our method, as
shown in Figure 2a. The atom size is 16 X 16, and the redundancy,
which is the ratio of the total number of atoms to the length of the
atom vector, is four.

The second step is to update the dictionary A under the condition
that all coefficients are known. The dictionary A is updated column
by column by minimizing the following objective function:

L
A= argrr}\inz IRd—Ax[} st af,<1. (5
=1
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where a; indicates the columns of the dictionary A. The constraint
in equation 5 can prevent the slow convergence rate caused by an
arbitrarily large atom amplitude. We use SVD to solve this problem
according to the K-SVD method because it is quick and straightfor-
ward in the calculation.

Atom classification method

As observed in the time slice of 3D poststack migration seismic
data in Figure 1, there exists significant morphological diversity be-
tween the acquisition footprint and the useful signals. The useful
signal s represents the underground geology, whereas the acquisi-
tion footprint f mimics parts of the acquisition geometry. Therefore,
the useful signal s shows a slow variation and local linear singularity
patterns, whereas the acquisition footprint f shows a stripe-like pat-
tern approximately perpendicular to the crossline direction. In other
words, the useful signal s appears piecewise smooth, whereas the
acquisition footprint f is characterized by texture.

Different atoms in the dictionary A also exhibit significant mor-
phological diversity. In the initial dictionary shown in Figure 2a,
some atoms have stripe-like features along the vertical direction
(such as elliptical markings) and have approximately morphological
features of the acquisition footprint f. The other part of the atoms
does not have noticeable stripe features (such as rectangular mark-
ings) and have approximately the morphological features of useful
signals s. Let the sparsity level T, be 10, and after K-SVD training,
a dictionary of sparse representation of the original data patch is
obtained, as shown in Figure 2b. We found that after training,
the patterns of atoms marked by the black ellipse are closer to
the morphological features of the acquisition footprint f compared
to the initial dictionary. Similarly, the atoms marked by the black
rectangle are transformed into atoms that have closer morphological
features of the useful signals s.

Based on the preceding analysis, the atoms of A can be clas-
sified into two categories: the atoms representing the local mor-
phological features of the useful signals s and those representing
the acquisition footprint f. Random noise n, which does not have

Crossline (km)
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[ . 2
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Figure 1. A time slice at 1700 ms in 3D seismic data acquired in the
East China Sea (Gao et al., 2016). This footprint pattern is evident in
the time slice as indicated by the red arrows; therefore, we used it
for the parameter selection of our method.

any regular local morphological features, is handled as a third
component. Note that random noise here is a by-product of noise
attenuation with dictionary learning and does not require inten-
tional suppression.

How to group atoms is a key issue when suppressing coherent
noise with dictionary learning. In contrast to the one-class classi-
fier (Turquais et al., 2017) or atom filtering (Gémez and Velis,
2020), we present a novel atom classification method according
to atom difference in the variation level along the horizontal and
vertical directions, which correspond to the crossline and inline
directions of seismic data in Figure 1. In the time slice, the local
patterns of the acquisition footprint appear as thin stripes extend-
ing approximately along the inline or crossline direction; there-
fore, each of the atoms for representing local morphological
features of the acquisition footprint vary slowly along one direc-
tion and rapidly along the other direction. The local patterns of the
useful signals can be divided into two types: One represents the
geologic body or geologic structure such as the channel or fault,
appearing as curve-like or point-like features, and the other
represents the stable sedimentary strata and appears piecewise
continuous. Therefore, the variation level of the atoms for repre-
senting the local morphological features of the useful signals does
not show a significant difference between the inline and crossline
directions. The difference function can measure the variation
level. According to the difference function, the variation level
along the inline and crossline directions, respectively, of the atom
a=(a;;); 12 . With the size N x N is defined as follows:

=

Vintine (@) = |aiv1; — a;jl. (6)

-

~

I
-

I
-

Z
L

Vxline(a) = Z

i=1 j=1

|“i,j+1 =4, j|- (N

Then, the DVD, which is the difference of the variation level
along the inline and along the crossline direction, can be expressed
as

DVD(a) = |Vinline - Vxline|‘ (8)

If DVD(a) is greater than a threshold DVDy,,, the atom a has
horizontal or vertical stripe features similar to the morphological
features of the acquisition footprint so that it can be identified as
an atom of the dictionary A/ to represent the acquisition footprint.
Otherwise, the atom a does not have apparent stripe features and can
be identified as an atom of dictionary A to represent the useful
signals.

Footprint suppression through reconstruction

Let the dictionary A* be the set of atoms representing the local
morphological feature of the useful signals s, and let x;] be the vector
consisting of the corresponding coefficients. Let the dictionary Af
be the set of atoms for representing the acquisition footprint f, and
let x{ be the vector consisting of the corresponding coefficients.
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Then, the useful signal component p; and the acquisition footprint
component p{ of each patch p, (for / = 1,2, ..., L) can be repre-
sented as follows:

P} = A’x], ©)

p] = A'x]. (10)
To stably obtain pj and p{ , we add a constraint that xj and x{ are
sparse, as follows:

min||p; — A*x; — A/X |3 + AlIx]lly + 2¢[x]|

s
X, ,X‘l

o db

where 4, and A are regularization parameters. We solve equation 11
based on the MCA method through iterative calculation of the fol-
lowing equations:

%) = T,(A% (p, — A/x])), (12)

&/ = T, (A7 (p, — A'X))), (13)

where T, is a soft thresholding function with threshold « and A**
and A" are the pseudoinverse matrices of A* and A/, respectively.
Finally, the useful signal component s and the acquisition footprint
component f can be calculated by combining the corresponding
component of each patch as follows:

L -1 L
s= (;R,TR1> ;prf, (14)

R ATSKR G
Lo Tan il S NP N
I
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L -1
f= (Z RITR,> > RTp/. (15)
=1

=1

EXAMPLES

We illustrate in this section the efficiency of the proposed method
on a synthetic data set and a marine-migrated stack data set from
China. After the synthetic data example, we conducted two experi-
ments to select the suitable parameters for the field example. In ad-
dition, we compare the results against a wavenumber filtering and
TSVD method (Al-Bannagi et al., 2005) in the field data appli-
cation.

Synthetic data application

We first use the synthetic data to demonstrate the validity of the
proposed method. Figure 3a displays the clean 3D cube, which con-
sists of 300 x 300 x 300 samples. The time-sampling interval is
1 ms, and the total recording time is 300 ms. From the time slice
in Figure 3a, it is apparent that the synthetic data contain two inter-
secting faults. Accordingly, the surrounding events show a sharp
bending deformation in the inline section and crossline section,
which poses a challenge to fault preservation. We use the textural
pattern that decays with time to mimic the morphological component
of footprint noise and add it to the clean cube, as shown in Figure 3. It
can be seen from the color bar that the amplitude range of added noise
is between —1 and 1, the same as clean data. The amplitude of the
noise is relatively strong, which seriously distorts the useful signals.
Next, the proposed method is applied to suppress the acquisition foot-
print with the DVD threshold of 2.4. Figure 3c and 3d presents the
separated useful signals and the removed footprint noise, respec-
tively. The results show that our method can effectively suppress
the footprint noise and that the fault structure is well preserved. It
is noticeable that the dictionary used for the synthetic data example
is just the initial DCT dictionary because the synthetic data are rel-
atively simple compared to the field data, which also proves the ra-
tionality of our choice of the initial dictionary.

Figure 2. Training dictionary using the K-SVD
method. (a) The initial dictionary. The atoms
can be divided into two categories according to
their DVD values. The red boxes point out the
atoms whose values are greater than the DVD
threshold. They have stripe features along the ver-
tical direction and have approximately morpho-
logical features of the acquisition footprint. The
other atoms do not have noticeable stripe features
and exhibit morphological features of useful sig-
nals. (b) The training results. After training the
dictionary, the patterns of red atoms marked by
the black ellipse are closer to the morphological
features of the acquisition footprint compared to
that of the initial dictionary. Similarly, the blue
atoms marked by the black box are transformed
into atoms with closer morphological features of
the useful signals.
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Parameter selection

The dictionary learning problem with the nonconvex constraint
shown in equation 3 is a nondeterministic polynomial-time hard
problem. Therefore, it is intractable for field seismic data, and we
can only obtain a series of approximate solutions. Selecting different
training dictionary parameters results in diverse atoms that satisfy the
constraints of equation 3. We categorize the atoms into two types and
obtain two subdictionaries mainly representing the local morphologi-
cal characteristics of the acquisition footprint and useful signals,
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0 100 200 300 0 100 200 300

Crossline number
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Crossline number
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respectively. Once the atoms of the well-trained dictionary are easier
to classify, the useful signals and acquisition footprint noise can be
separated more accurately. In addition to the training parameters, the
classification threshold of DVD, used to classify the atoms in the
dictionary, is also a crucial parameter. A common concern is how
to choose these parameters correctly. With the aid of the time slice
shown in Figure 1, we investigate the behavior of the proposed
method for different values of these parameters.

The training dictionary parameters include the size of the atom,
the redundancy of the dictionary, and the sparsity level. A time
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Figure 3. Synthetic data example. (a) Clean 3D cube. (b) Noisy 3D cube contaminated by coherent noise with textural features. (c) The result

after coherent noise reduction. (d) Residual.
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Figure 4. Parameter selection for dictionary
training from the aspect of DVD distribution.
The parameters include atom size, redundancy,
and sparsity level. When the atom size is
16 x 16, the difference in the parameter DVD of
each atom is larger than that when the atom size
is 8 X 8, and it is easier to classify the atoms by
the parameter DVD. (a) The atom size is 8 X 8,
redundancy is four, and the sparsity level is four.
(b) The atom size is 16 X 16, redundancy is four,
and the sparsity level is four. (c) The atom size is
16 x 16, redundancy is four, and the sparsity level
is 10. (d) The atom size is 16 X 16, redundancy is
nine, and the sparsity level is four.
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Figure 5. Parameter selection for dictionary training from the aspect of reconstruction time-slicing data error. The parameters include atom
size, redundancy, and sparsity level. A significant acquisition footprint (e.g., rectangular regions) is observed in (b and d), and no significant
acquisition footprint is observed in (c). (a) The atom size is 8 X 8, redundancy is four, and the sparsity level is four. (b) The atom size is 16 X 16,
redundancy is four, and the sparsity level is four. (c) The atom size is 16 X 16, redundancy is four, and the sparsity level is 10. (d) The atom size
is 16 x 16, redundancy is nine, and the sparsity level is four.
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slice d is divided into a group of data patches of the same size as in
equation 2, each of which is represented sparsely by the atoms of
the dictionary. The size of the atom, which determines the dimen-
sions of the linear space described by the dictionary, is the same

Liu et al.

size as the patch. For example, if the size of an atom has 16 X 16
samples, the dimension of the linear space described in the dic-
tionary is 16 X 16 = 256. The redundancy of the dictionary is
the total number of atoms in the dictionary divided by the size
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Figure 6. Reconstructing time-slicing data in different ranges of DVD. When using the DVD < 6 atoms, there is some signal leakage, for
example, elliptical regions: (a) 3 < DVD <4; (b) 4 <DVD<5;(c) 5<DVD<6; (d) 6 <DVD<7; and (¢) DVD > 7.
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of one atom. For example, if the size of an atom is 16 X 16 and the
number of atoms is 16 X 16 X 4 = 1024, the redundancy of the
dictionary is four.

Figures 4 and 5 show the DVD calculated from atoms of the
four dictionaries with different parameters and the error of recon-
structing time-slicing data with each dictionary, respectively. The
larger the size of the atom, the more effective the representation of
the local morphological feature corresponding to the time slice.
Therefore, it is easier to classify atoms according to their morpho-
logical features. Comparing Figure 4a and 4b, we can see that
when the atom size is 16 X 16, the difference in the DVD of each
atom is larger than that when the atom size is 8 X 8, and it is easier
to classify the atoms by DVD. Comparing Figure 4b—4d, there is
no apparent change in DVD in the dictionary obtained by chang-
ing the redundancy and sparsity level. Figure 5 shows the corre-
sponding reconstruction errors of the different parameters in
Figure 4. Figure 5b and 5d contains significant acquisition foot-
prints (e.g., rectangular regions), and no significant acquisition
footprint is observed in Figure 5c. This example shows that
increasing the redundancy of the dictionary cannot effectively re-
duce the acquisition footprint in the reconstruction error, whereas
increasing the sparsity level can effectively reduce the acquisition
footprint in the reconstruction error. Reconstructing the useful sig-
nals directly and reconstructing the acquisition footprint first be-
fore subtracting it from the input are two methods of suppressing
the acquisition footprint. Moreover, if we reconstruct the footprint
and subtract it from the input, the sparsity level is a sensitive
parameter that must be large enough to capture complete footprint
patterns. No clear structural information of useful signals is ob-
served in Figure 5b—5d, indicating that the learned dictionaries
under these redundancy and sparsity levels contain all signal pat-
terns. In other words, the subdictionary of useful signals can re-
construct the complete useful signals and accomplish the objective
of suppressing the acquisition footprint. In addition, because we
directly obtain useful signals, random noise also can be attenuated
as a by-product.

Figure 6 shows the reconstruction results of the time-slicing data
at different ranges of DVD. The atomic reconstruction results con-
tain useful signals in the atoms of 3 < DVD < 4,4 < DVD < 5, and
5 <DVD < 6 (e.g., elliptical regions), whereas there are no obvious
useful signals in the reconstruction results of 6 < DVD <7 and
DVD > 7 atoms. Therefore, we can suppress the acquisition foot-
print under the premise of the maximum to preserve the structure of
the useful signals when using the DVD < 6 atoms and DVD > 6
atoms to reconstruct the useful signals and the acquisition footprint,
respectively.

In summary, compared with the choice of atom size as the 8 X 8
samples, the size of the atom with the 16 X 16 samples can more
effectively suppress the acquisition footprint noise because a
larger atom size can represent more complex morphological com-
ponents, which reduces the atom correlation and makes it easier to
classify atoms. However, a large atom size is computationally in-
tensive. Therefore, we make a trade-off and set the atom size as
16 X 16. Dictionary redundancy and the sparsity level are not sen-
sitive parameters for directly separating useful signals. Their val-
ues over a wide range can ensure that there is little signal leakage
in the reconstruction error. However, one of our comparison meth-
ods is a k.-k, filter, which cannot attenuate random noise. There-
fore, for fairness, we separate the footprints from the input data.
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That is, the reconstruction error, which is the third component of
our method, is added back to the separated useful signals. To bet-
ter suppress footprint noise, the reconstruction error cannot con-
tain the footprint. From the perspective of reconstruction error in
Figure 5, a sparsity level of 10 is better than four. There is no
obvious acquisition footprint in the reconstruction error when
taken as 10, whereas there is a significant acquisition footprint
structure when the sparsity level is taken as four. Therefore, we
select the following parameters to suppress the acquisition foot-
print: The atom size is 16 X 16, the redundancy is four, the sparsity
level is 10, and the initial dictionary is a redundant 2D DCT. The
dictionary trained by the K-SVD method can be obtained, as
shown in Figure 2b. Although the results presented subsequently
are satisfactory, the parameters are empirically selected, and a
trade-off is made between denoising performance and computa-
tional cost. Several questions remain regarding selecting param-
eters and the relationship between these parameters and the size
and distance of the footprint stripes.

Field data application

To examine the effectiveness of our proposed method, we show
the suppression results of 3D poststack migration field data
in Figure 7. This volume is a marine data set acquired from the
East China Sea, consisting of 300 traces and 564 lines. The spatial
sampling intervals in the inline and crossline directions are 12.5
and 30.0 m, respectively. In the time direction, its range is from
1000 to 1700 ms with a 2 ms time-sampling interval. As shown in
Figure 6, this data set suffers from an acquisition footprint
problem due to insufficient sampling intervals between towed
streamers.

The proposed method is applied to the presented data, following
the parameters in the previous section. We randomly selected 10 time
slices and performed 10 iterations to train the dictionary. One baseline

Figure 7. A 3D cube of a marine data set acquired in the East China
Sea. We use these data to examine the effectiveness of the proposed
method.
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method is the k,-k, filter. Figure 8a shows the wavenumber domain of
the original time slice at 1700 ms. It is challenging to select the ap-
propriate filtering region, and improper filtering usually causes sig-
nificant damage to the original data. In this case, we apply a 2D filter
in the wavenumber domain using commercial software, which can
smooth the filtering boundary between the pass and stop bands to
reduce signal distortion. We use our results (shown in Figure 8b
and 8c) as an initial guide for the filtering region of two circular
bands, and then we fine-tuned until the footprint patterns were well
removed. Figure 8d and 8e displays the wavenumber domain of the
filtered footprint and useful signals, respectively. The wavenumber
domain of random noise is outside the filtering regions; hence,
our proposed method adds the residual into separated useful signals
for an impartial comparison. We also compare the suppression results
with the TSVD method proposed by Al-Bannagi et al. (2005). Time

a)

k (km™)

k (km™)

slices are cropped into overlapped patches of size 21 X 21, and they
overlap on 15 samples in both dimensions. The first six ranks are
reserved as useful signals. It should be stated that the three methods
maintain the same parameter settings for processing all time slices.

We first compared the three methods in a time slice at 1040 ms, as
shown in Figure 9. Figure 9a shows that this time slice is contami-
nated by footprint noise. Figure 9b and 9c shows the results sup-
pressed by the k.-k, filter and the residual. We observe that the
acquisition footprint noise is suppressed effectively because we
have carefully selected the filter parameters for a fair comparison.
Even so, the k-k, filter smears the useful signals and causes some
damage to the dipping structures, as indicated by the black circles.
TSVD is also a powerful tool for suppressing acquisition footprint
artifacts, but it causes too much damage to the useful signals, as
shown in the ellipse regions in Figure 9d. Figure 9e displays the
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Figure 8. A 2D fast Fourier transform of the time slice at 1700 ms. We apply a well-designed k.-k, to suppress the footprint. The initial
filtering region of two circular bands is guided by our method in (b and c). (a) The wavenumber domain of the original time slice. (b) The
wavenumber domain of the separated footprint with our method. (c) The wavenumber domain of the separated useful signals with our
method. (d) The wavenumber domain of the separated footprint with a k.-, filter. (¢) The wavenumber domain of the separated useful

signals with a k,-k, filter.
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acquisition footprint noise removed by the TSVD method, and the
figure clearly indicates leakage of useful signals. The results ob-
tained from our method are presented in Figure 9f and 9g. We ob-
served that the proposed method actualizes an effective footprint
suppression with no harm to the structures.

The same conclusion can be obtained from the time slice at
1678 ms in Figure 10. The time slice is blurred after k.-k, filtering,
as displayed in Figure 10b. Because the acquisition footprint noise
of the low wavenumber overlaps with the useful signals, the k.-k,
filtering method may harm the useful signals. Especially in the re-
gion indicated by the black circles, some artifacts are introduced,
whereas our method preserves the structure of useful signals. An
inspection of the white circles in Figure 10d and 10e reveals that
signal leakage caused by TSVD significantly affects the sharpness
of the filtered data. Our method effectively suppresses the footprint

a) . ) , , Croislineékm) ] , \ b) ,

€
=3
o
£
=

Crossline (km) C)

while preserving the structure of useful signals. It is important to
point out that the two time slices in this example are not used to
train the dictionary, which indicates that our method has good gen-
eralization ability.

To further compare the denoising results, two lines in Figure 10a
are selected for section inspections. Figure 11a shows an inline sec-
tion at 4.4875 km, which contains footprint patterns. Figure 11b and
11c shows the filtered section by k.-, filtering, and we see that the
footprint suppression result is acceptable. However, some signal
patterns are distorted where the acquisition footprint overlaps sig-
nals, as indicated by the black ellipses. Looking at Figure 11d and
11e, it is apparent that many footprint patterns are left after TSVD.
The white circle regions indicate that some signal structure leaks
into the residual. From Figure 11f and 11g, we can see that the data
structures and amplitudes are well preserved with our proposed
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Figure 9. Results of the time slice at 1040 ms. The k,-k, filter smears the useful signals and causes some damage to the dipping structures, as
indicated by the black circles. TSVD causes too much damage to the useful signals, as shown in the ellipse regions in (d and e). The proposed
method in (f and g) actualizes an effective footprint suppression with no harm to the structures. (a) Original time slice. (b) Result after footprint
noise suppression by a k.-k, filter. (c) Residual after footprint noise suppression by a k.-k, filter. (d) Result after footprint noise suppression by
TSVD. (e) Residual after footprint noise suppression by TSVD. (f) Result after footprint noise suppression by the proposed method.

(g) Residual after footprint noise suppression by the proposed method.
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method, whereas footprint noise is removed. Compared with the
preceding figures, it can be seen that, although the removed noise
energy of our method is slightly weaker than that of TSVD and the
k-k, filtering, the filtered events of our method have better continu-
ity, especially at approximately 1.35 s. Therefore, our method has
better fidelity.

Figure 12a shows a crossline section at 1.74 km. The filtered re-
sults of the k-k, filtering are presented in Figure 12b and 12c, which
yields acceptable footprint suppression. We found that the damage is
obvious in the upper right part of the section, as illustrated by the
black circles, perhaps because we keep the filtering parameters fixed
and they are not appropriate for those patterns. This also reveals that
the filter is poorly adaptive and that the parameter selection is com-
plicated. For the suppression results of TSVD shown in Figure 12d
and 12e, significant signal leakage was observed in the white ellipse

a) , Crossline (km) b) .

Inline (km)

Inline (km)

Inline (km)

Crossline (km)

regions. Compared to the k.-k, filtering and TSVD, our proposed
method can accomplish this task without signal leakage and does
not significantly affect the sharpness of the separated useful signals.
In accordance with the inline results, our method can be adapted to
different structures because all time slices have been effectively sep-
arated into two corresponding components even when they change
over time.

DISCUSSION

Following the MCA theory (Elad et al., 2005), we assume that
the original seismic data are a mixture of useful signals, footprint
noise, and residual noise. We trained an adaptive dictionary to
learn the morphological features of the original data. The compo-
nents of useful signals and footprint noise in each patch can be
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Figure 10. Results of the time slice at 1678 ms. The black circles indicate that the k.-k, filtering method introduces some artifacts, whereas our
method preserves the structure of useful signals. The white circles in (d and e) reveal that signal leakage caused by TSVD significantly affects
the sharpness of the filtered data. Our method in (f and g) effectively suppresses the footprint while preserving the structure of useful signals.
The two red lines in (a) denote the position of the sections for subsequent comparison. (a) Original time slice. (b) Result after footprint noise
suppression by a k.-k, filter. (c) Residual after footprint noise suppression by a k,-k, filter. (d) Result after footprint noise suppression by TSVD.
(e) Residual after footprint noise suppression by TSVD. (f) Result after footprint noise suppression by the proposed method. (g) Residual after

footprint noise suppression by the proposed method.

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/86/6/V509/5459548/ge0-2020-0681.1.pdf
bv Univ Alberta | ibrarv user



Acquisition footprint suppression V521

separated by reconstructing them using two subdictionaries. It is
undeniable that constructing appropriate subdictionaries is the key
to the success of our method. We follow two principles to obtain
the two subdictionaries. On the one hand, the morphological
differences between the atoms of the two dictionaries should be
large enough to distinguish them properly; to achieve this, we se-
lected a larger atom size, but this is a trade-off because it increases
the computation time. On the other hand, the number of atoms and
atom morphological diversity in each dictionary should be large
enough to ensure a sparse representation. In addition to the redun-
dancy and sparsity level, the initial dictionary also needs to be se-
lected carefully. The redundant 2D DCT exhibits significant
morphological diversity because their atoms have separate stripe
patterns and piecewise-smooth patterns. After training, there is

a) Crossline (km) b)

Crossline (km)

still a considerable number of atoms with stripe morphological
features. An alternative method for determining the initial diction-
ary is to use original data themselves (Elad and Aharon, 2000),
that is, randomly selecting some patches from the training data
set. However, the patterns of the acquisition footprint are mixed
with the useful signals in almost every atom of this initial diction-
ary, and it is difficult to separate them after training. Therefore,
there are not enough atoms in the acquisition footprint subdiction-
ary to represent the footprint noise sparsely and the suppression
performance is inferior to our method. Because the subdictionaries
contain sufficient morphological features of useful signals and col-
lected footprints, respectively, the transfer learning capability of
our method is suitable even if the parameters remain the same
for different time slices.
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Figure 11. Results of the inline section at 4.4875 km. The black circles in (b and c) indicate that the k,-k, filtering method introduces some
artifacts. The white circles in (d and e) reveal that there is some signal leakage caused by TSVD. Our method in (f and g) effectively suppresses
the footprint while preserving the structure of useful signals. (a) Original inline section. (b) Result after footprint noise suppression by a k.-k,
filter. (c) Residual after footprint noise suppression by a k-, filter. (d) Result after footprint noise suppression by TSVD. (e) Residual after
footprint noise suppression by TSVD. (f) Result after footprint noise suppression by the proposed method. (g) Residual after footprint noise
suppression by the proposed method.
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Figure 12. Results of the crossline section at 1.74 km. The black circles indicate that some signal patterns leak into the residual with the k.-k,
filtering method. From the white circles in (d and e), we find that signal leakage caused by TSVD significantly affects the sharpness of the
filtered data. Our method pertains to the structure of useful signals well. (a) Original crossline section. (b) Result after footprint noise sup-
pression by a k-k, filter. (c) Residual after footprint noise suppression by a k.-k, filter. (d) Result after footprint noise suppression by TSVD.
(e) Residual after footprint noise suppression by TSVD. (f) Result after footprint noise suppression by the proposed method. (g) Residual after
footprint noise suppression by the proposed method.
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CONCLUSION and adaptability. Compared to k.-k, filtering and TSVD, our pro-
posed method shows higher fidelity in useful signal reconstruction

We have presented an acquisition footprint suppression method with less signal leakage.

based on local MCA and adaptive dictionary sparse representation
of time slices. The adaptive dictionary can sparsely represent each
patch of the time slice data with atoms representing the local mor-
phological features of the time slice. Furthermore, we presented a
dictionary-splitting method based on DVD, which divides the adap-
tive dictionary into two subdictionaries. One subdictionary consists
of atoms representing the local morphological features of the ac-
quisition footprint, whereas the other subdictionary consists of
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