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Abstract— Ground-penetrating radar (GPR) is a pivotal non-
invasive tool that yields subsurface images critical to archeology,
near-surface characterization, geotechnical studies, and disaster
response. The antenna central frequency of the GPR system has
a significant impact on penetration depth and resolution. Lower
antenna frequencies penetrate deeper but at lower resolutions,
while higher frequencies offer detailed images at reduced depths.
Therefore, improving the resolution of low-frequency radar with
increased detection depth is an essential research focus. Inspired
by image super-resolution advancements, supervised deep learn-
ing methods that rely on strictly paired training data have
achieved remarkable success. However, acquiring such paired
samples in practical scenarios is often a formidable challenge.
To tackle this, we propose a novel resolution enhancement tech-
nique through weakly supervised learning, effectively addressing
the scarcity of strictly paired samples in real-world situations.
We utilize two sets of antennas with different central frequencies
to construct our training data, with a low-frequency antenna
as input and a high-frequency antenna as the learning target.
A cycle-consistent generative adversarial network (Cycle-GAN)
is trained to discern the mapping between low-resolution inputs
and unpaired high-resolution data. The refined network is then
employed to improve low-frequency GPR data resolution. Our
work is validated on synthetic and real-world datasets. The
proposed method effectively strengthens critical high-frequency
details for finer imaging and broadens the frequency bandwidth.
Significantly, it enhances resolution without compromising the
detection depth of low-resolution GPR data, marking a substan-
tial advancement in subsurface imaging technology.

Index Terms— Cycle-consistent adversarial network, ground-
penetrating radar (GPR), resolution, signal processing, weakly
supervised learning.

I. INTRODUCTION

GROUND-PENETRATING radar (GPR) utilizes electro-
magnetic waves to explore subsurface structures. As a
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noninvasive imaging technique, GPR provides high-resolution
subsurface profiles, proving invaluable in sedimentol-
ogy [1], [2], archeology [3], [4], military reconnaissance [5],
and disaster management [6]. High temporal resolution in GPR
recordings is essential for precise stratigraphic interpretation of
reflection images. It facilitates the detailed identification and
characterization of subsurface structures, thereby improving
subsurface evaluation reliability.

The performance of GPR, specifically its penetration depth
and resolution, is affected by various factors. Key among these
are the characteristics of the transmitter pulse [7], [8], and the
design of the transmitter–receiver system [9]. Additionally,
the electromagnetic properties of various media can induce
ground filtering effects, leading to different levels of wave
attenuation and a consequent decrease in resolution with
increased depth. These factors collectively cause amplitude
distortions and time delays, distorting the actual subsurface
reflectivity profile. In practical exploration, a fundamen-
tal compromise emerges between resolution and penetration
depth. High-frequency GPR antennas yield finer resolution
but suffer from rapid energy attenuation, limiting exploration
depth. Conversely, low-frequency GPR antennas, while offer-
ing enhanced penetration, deliver data with comparatively
lower resolution. Consequently, any GPR system based on
a singular central frequency must reconcile this inherent
trade-off between the desired resolution and the depth of
investigation.

Various signal processing methods have been proposed to
enhance the GPR imaging capabilities constrained by a single
central frequency, particularly in complex subsurface geome-
tries. Traditional approaches include deconvolution, inverse
Q filtering, spectral whitening, and the time-frequency trans-
form method. Deconvolution [10], [11], [12], [13] is the
inverse operation of the classic convolutional model, seeking
to extract the original spike series from a convolved trace given
the wavelet. However, geological complexities that deviate
from idealized convolutional assumptions often undermine
its effectiveness, yielding suboptimal results. Inverse Q fil-
tering attempts to compensate for velocity dispersion and
high-frequency energy dissipation during wave traveling, but
it relies heavily on precise Q estimations, which are notori-
ously tricky to obtain [14], [15]. Spectral whitening, a more
straightforward approach, avoids complex Q estimations but
fails to rectify phase distortions [16], [17], [18]. In addition,
as a frequency-dependent method, it inadvertently boosts noise
levels since the amplified high-frequency components it targets
are often occupied by noise, diminishing the overall fidelity of
the GPR image. A common workaround involves applying a
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time-varying bandpass filter to mitigate these issues. Advanced
time-frequency transform techniques, such as the S trans-
form [19], short-time Fourier transform [20], and wavelet
transform [21], [22], are employed to enhance GPR resolution.
While they are effective, the challenge of selecting appropriate
model parameters persists [23], [24]. The burgeoning field of
deep learning offers a promising alternative by acquiring prior
knowledge from end-to-end learning to sidestep the parameter
selection issue [25], [26], [27], [28], [29], [30], [31], [32], [33].
Notable implementations on GPR resolution enhancement
include U-net [34], residual-in-residual structure [35], and
InvNet [36]. While these supervised deep learning methods
hold promise for advancing GPR resolution, their efficacy
is contingent upon the availability of extensive, high-quality
training datasets, which are often scarce due to the complex
nature of subsurface environments.

Recent advancements in GPR technology have seen the
emergence of multichannel (or multiarray) systems capable
of providing multifrequency datasets. These modern systems,
such as the sweep-frequency radar for the Mars2020 mis-
sion [37] and the dual-frequency radar for the Chang’E4
mission [38], offer a promising approach to address the
inherent trade-off between penetration depth and resolution
encountered with single central frequency systems. Data fusion
methodologies have become indispensable to fully leverage
the rich information garnered from antennas operating at
different central frequencies. Traditional methods, including
statistical techniques [39], wavelet transforms [40], genetic
algorithms [41], and tomographic inversions [42], have been
successfully employed to enhance GPR datasets. However,
these approaches often require extensive preprocessing and
struggle to transition smoothly between the merged sections
from different frequency profiles. Recent innovations in deep
learning, particularly those involving recurrent neural net-
works [43], [44], have been proposed to address the data
merging issue more seamlessly. However, they hinge on
the availability of precisely matched datasets in one-to-one
correspondence. This necessitates an exacting alignment of
survey paths, typically along a straight line, which is not
only labor-intensive but also challenging on steep or rough
terrains. Furthermore, antennas of different frequencies typi-
cally have distinct sampling parameters due to instrumentation
variability and operational constraints. These necessitate a
meticulous data calibration process to ensure the fidelity of
multifrequency data fusion, which also could introduce data
differences. Additionally, collecting paired samples may not
be feasible in certain situations, such as when dealing with
historical data or studying rare or rapidly evolving phenomena.
Therefore, there is an urgent need for weakly supervised deep
learning methods to overcome these challenges, improving
flexibility and scalability in various real-world applications.
Weakly supervised learning involves training networks with
unpaired data, where the learning target is available but not
explicitly matched with the input data. It aims to infer the
mapping from the input distribution to the learning target dis-
tribution. This method contrasts with semi-supervised learning,
which combines a small amount of fully labeled data with
a larger volume of unlabeled data but does not involve the

challenge of label imprecision inherent in weakly supervised
settings.

To mitigate the challenges in acquiring precisely matched
low- and high-resolution GPR samples in practical engineer-
ing, we draw inspiration from image processing, where style
transfer techniques between unpaired images have demon-
strated potential for resolution enhancement [45]. Similarly,
in seismic data processing, unpaired training strategies have
shown promise [46]. Building on these insights, we propose
a weakly supervised learning framework using a cycle-
consistent generative adversarial network (Cycle-GAN). This
innovative network learns the mapping relationship from low-
to high-resolution GPR data domains without paired samples.
Accordingly, it streamlines data collection and makes flexible
data acquisition possible, eliminating the requirement for pre-
cise path alignment. Moreover, this unpaired training strategy
focuses on learning distinctive features directly from the target
data, thus sidestepping the intensive preprocessing required
by traditional methods, such as amplitude equalization and
balance. Like other learning-based methods, its performance
continues to evolve as more high-resolution data becomes
available. Standing on [46], we significantly improve the
stability of resolution enhancement by incorporating an addi-
tional cycle structure. After fine-tuning, the trained network
effectively enhances the resolution of the entire low-frequency
GPR image in a single pass, avoiding unwanted “cut and
paste” artifacts typically introduced by combined windows
of traditional methods. Furthermore, the network inference
process is highly efficient, which is advantageous for handling
large datasets from multifrequency antennas. Validated on
simulated and real-world datasets, our technique consistently
enhances high-frequency detail and extends bandwidth with-
out causing phase distortions. Most notably, it significantly
improves resolution while preserving the detection depth of
low-resolution GPR data, underscoring its utility for advanced
GPR applications.

The remainder of the article is organized as follows.
Section II outlines the methodology employed throughout the
study. Section III presents the results of resolution enhance-
ment experiments conducted on both simulated and field
seismic data, demonstrating the superior performance of the
proposed method. Then, we discuss the limitations of the
current approach and suggest potential avenues for future
research in Section IV. Finally, the conclusion is presented
in Section V.

II. METHOD

Building upon the CycleGAN framework’s capacity for
image translation without paired training data, this section
outlines the overall workflow for weakly supervised learning
and refines its architecture and loss function to improve GPR
data resolution using unpaired high-frequency samples.

A. GPR Resolution Enhancement Workflow Using Weakly
Supervised CycleGAN

This section delineates the workflow for enhancing GPR
data resolution through a weakly supervised CycleGAN.
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Fig. 1. Workflow of the CycleGAN network for enhancing GPR data resolution. “A” represents low-resolution data, and “B” signifies high-resolution data.
The term “Real” refers to patches cropped from real-world field data, distinguishing them from data generated by the generator.

Our method utilizes low-resolution GPR inputs to synthesize
data comparable to high-resolution GPR samples without
requiring precise matching between training inputs and target
outputs. The strength of this approach lies in the CycleGAN’s
ability to transform data from a low-resolution GPR data
domain (referred to as A) to a high-resolution domain (referred
to as B), leveraging the model’s inherent feature adaptation
capabilities.

Fig. 1 depicts the tailored workflow of CycleGAN employed
in this research. The architecture comprises two GANs
arranged in a symmetric configuration, each containing a
generator and a discriminator. The generator G A2B is tasked
with learning the transformation from the low-resolution data
distribution to the high-resolution domain, thereby trans-
lating samples from domain A to domain B. Conversely,
the generator G B2A performs the inverse mapping, convert-
ing high-resolution GPR data back to the low-resolution
domain A. The discriminator DB guides the generator
G A2B by differentiating between actual high-resolution data
and synthesized outputs, promoting the adversarial learn-
ing process that drives the synthesis of more authentic
high-resolution GPR images. Simultaneously, the discrimina-
tor DA assesses the authenticity of G B2A’s output, generating
credible low-resolution GPR images. This dual arrangement
facilitates a robust adversarial feedback loop, where each
generator not only strives to produce realistic images but also
learns to reconstruct the original input from its own outputs,
ensuring fidelity and consistency. This symmetric reconstruc-
tion process fosters a robust feature learning environment.

It inherently encourages the preservation of essential features,
which is critical for generating realistic high-resolution GPR
data that retain the integrity of the subsurface information.

We further elucidate the workflow with an example of one
unidirectional data flow from domain A to domain B.

1) Initial input: Low-resolution GPR samples from domain
A are introduced to the generator G A2B .

2) High-resolution generation: The generator G A2B pro-
cesses the inputs to synthesize high-resolution outputs,
aiming to emulate the characteristics of high-resolution
GPR data in domain B.

3) Reconstruction: The synthesized high-resolution data
is subsequently fed into the generator G B2A, which
attempts to reconstruct the original low-resolution data.
This step is crucial as it enforces the preservation of key
features during the resolution enhancement process.

4) Discrimination and iteration: Discriminators DA and
DB assess the synthesized data and reconstructed data,
respectively. Their role is to guide the adversarial train-
ing by providing critical feedback on the realism of the
generated data. This feedback prompts iterative refine-
ment of the network parameters, leading to enhanced
fidelity and authenticity in the GPR images produced
by the network.

The adversarial training process is a carefully orchestrated
sequence where the discriminators are initially trained to
distinguish between actual and synthesized data, followed by
the training of the generators based on the feedback from
the discriminators. This iterative process continues until the
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Fig. 2. Architecture of generator G A2B . The numbers following the symbols k, n, and s indicate the specific parameters of the convolutional layer. Specifically,
“k7n64s1” refers to a convolution layer with 64 filters, where the spatial size is 7 and the stride is 1.

Fig. 3. Architecture of discriminator DB . This component is crucial for guiding the updates of generator G A2B by differentiating between actual high-resolution
data and generated outputs, ensuring the progressive refinement of generated images toward authentic high-resolution quality.

network achieves a Nash equilibrium state, indicating that both
the generators and discriminators are optimized to their full
potential.

B. Network Architecture

We refine the CycleGAN architecture proposed by
Zhu et al. [47] to address the challenge of enhancing the
resolution of GPR data. Our improvements are detailed in the
generator and discriminator components, ensuring a compre-
hensive upgrade to the workflow’s capabilities.

Image super-resolution is one of the pioneering applications
of deep learning, paving the way for the revolutionary inte-
gration of CycleGAN in enhancing image quality. Within this
context, the role of generators is critical, as they synthesize the
fine details that significantly impact the performance of resolu-
tion improvement tasks. Our generator network is thoughtfully
engineered to mirror the successful architectures in single-
image super-resolution, as explored by Zhang et al. [48].
Detailed in Fig. 2, it incorporates convolutional layers, instance
normalization layers, activation functions, and residual blocks,
each meticulously integrated to facilitate the generation of
high-resolution GPR images.

The generator begins refining input GPR data through a
cascade of convolutional layers, each followed by instance
normalization and rectified linear unit (ReLU) activation func-
tions. This sequence efficiently extracts sophisticated features,
condensing the raw data into essential feature spaces that
encapsulate the crucial subsurface information while com-
pressing the data dimensions. To counteract the potential
information loss inherent in deep networks, we strategi-
cally position eight residual blocks within the generator.
These blocks are designed to preserve the intricate details

of GPR data, safeguarding subsurface structural fidelity. They
also mitigate the vanishing gradient issue commonly encoun-
tered with increasing network depth, ensuring consistent
gradient propagation throughout the training process. The
generator culminates with two deconvolutional layers that
upscale the condensed feature representations back into a high-
resolution format. This crucial step transforms the feature
space into detailed GPR images that align with the target
high-resolution domain. In addition, normalization plays a
pivotal role throughout the network training. After careful
consideration, we opt for instance normalization [49] over
batch normalization [50] due to its superior performance
in normalizing individual data samples. This normalization
method is particularly advantageous for our application, as it
helps to avoid the training instabilities and visual artifacts
that batch normalization may introduce in deep networks.
Moreover, it contributes to a faster and more stable network
convergence, which is critical for efficiently training our model
to produce high-fidelity GPR images.

In the discriminative phase of our CycleGAN framework,
we utilize two PatchGAN [51] discriminators with identi-
cal structures. The PatchGAN discriminators are specifically
proficient at detecting high-frequency components by concen-
trating on localized patches, thereby streamlining the model’s
complexity through a reduced parameter count without com-
promising its feature recognition capabilities. As illustrated
in Fig. 3, our design incorporates multiple convolutional layers
dedicated to feature extraction, culminating in a final convolu-
tional layer outputting a grid of values. Each value corresponds
to a discrete input patch, providing the assessment of the
discriminator on the authenticity of each patch. The average of
these values is then computed to determine the overall discrim-
ination score. Following the earlier normalization approach,
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instance normalization is applied to feature maps extracted
from convolution layers. This choice is in harmony with
the localized operational focus of PatchGAN, facilitating the
discrimination process.

In summary, the architecture of our CycleGAN is tailored
to enhance GPR data resolution by leveraging a generator that
preserves essential details and an efficient discriminator that
focuses on local features. The normalization technique ensures
stable and fast convergence. This innovative architecture,
combined with carefully formulated loss functions, directs the
adversarial training to produce high-quality, high-resolution
subsurface images.

C. Loss Functions

Under the guidance of the previously outlined workflow
and network architecture, we now focus on the specifics of
loss functions. These functions are pivotal in training, greatly
shaping the overall training outcome. With unpaired training
patches a ∈ A and b ∈ B, the total CycleGAN loss func-
tion Ltotal is decomposed into three fundamental components:
generative adversarial loss LGAN, cycle consistency loss Lcyc,
and multiscale structural similarity (MS-SSIM) loss LMS-SSIM.
Each component fulfills a specific role in guiding the network
toward generating high-fidelity GPR images.

The GAN loss is applied to both generators and discrimi-
nators to ensure that the generated data aligns with the target
sample distribution. For improved training stability, we utilize
the least squares loss, as suggested by Mao et al. [52], over the
traditional negative log-likelihood approach [53]. The GAN
loss for G A2B and DB , which encourages the generator to
produce high-resolution GPR data that appears authentic to
the discriminator, is defined as follows:

LA2B
GAN(G A2B, DB) = Eb∼PB

[
DB(b)2]

+ Ea∼PA
[
(1 − DB(G A2B(a)))2] (1)

where PA and PB represent the distributions of the
low-resolution and high-resolution GPR data domains, respec-
tively. The function G A2B(a) denotes the generative process
for the mapping G A2B : A → B, while DB(·) is the
discriminator’s evaluation of the generated and target data.
Similarly, the loss function for the inverse transformation from
B to A is

LB2A
GAN(G B2A, DA) = Ea∼PA

[
DA(a)2]

+ Eb∼PB
[
(1 − DA(G B2A(b)))2]. (2)

These two loss functions are integral to LGAN, compelling
the generators to create data that is indistinguishable from the
actual target samples, thereby achieving a more stable and
reliable GPR data enhancement.

To avoid generating unrealistic and meaningless samples
and maintain the integrity of the generated data concerning the
original sample distribution, we employ the cycle consistency
loss function. The cycle consistency loss measures the differ-
ence between the original data and the reconstruction from
transformed data. It ensures that the transformations between
the two domains are reversible, maintaining a consistent
mapping. Given the dual-generator architecture of our model,

Fig. 4. Diagram of cycle consistency loss. (a) Data flow starting from A to
B. (b) Data flow starting from B to A.

this loss is split into two components: from A to Band from
B to A, as conceptualized in Fig. 4. The former is illustrated
in Fig. 4(a), which traces the journey of low-resolution GPR
data as it is first elevated to a high-resolution state by G A2B

and subsequently reverted to its original domain via G B2A.
Essentially, this is characterized by the transformation a →

G A2B(a) → G B2A(G A2B(a)) ≈ a. Conversely, Fig. 4(b)
depicts the transformation of high-resolution data back to its
initial form, which can be represented as b → G B2A(b) →

G A2B(G B2A(b)) ≈ b. The interplay of these two cycle con-
sistency losses imposes a robust constraint on the generators,
ensuring that the model preserves the core attributes of the
GPR data through the transformation processes. Based on the
L1 norm, the discrepancy between the original and recon-
structed GPR data can be evaluated as follows:

Lcyc(G A2B, G B2A) = Ea∼PA [∥G B2A(G A2B(a)) − a∥1]
+ Eb∼PB [∥G A2B(G B2A(b)) − b∥1]. (3)

To address the limitations of cycle consistency loss in
preserving structural integrity during data transformations,
we incorporate an additional structural consistency loss func-
tion. The MS-SSIM [54] is employed herein, assessing the
internal structure, contrast, and luminance between the orig-
inal and generated data. It ensures that the transformation
process maintains the data structural fidelity by maximizing
the similarity across the transformation cycle. The structural
consistency loss is mathematically formulated as follows:

LMS-SSIM(G A2B, G B2A)

= Ea∼PA[1 − MS-SSIM(G B2A(G A2B(a)), a)]
+ Eb∼PB [1 − MS-SSIM(G A2B(G B2A(b)), b)]. (4)

Integrating the cycle consistency and structural consistency
losses imposes robust constraints that guide the genera-
tors toward producing high-fidelity transformations. The total
objective function is composed of the aforementioned loss
components

L(G A2B, G B2A, DA, DB) = LA2B
GAN(G A2B, DB)

+ LB2A
GAN(G B2A, DA)

+ λ1Lcyc(G A2B, G B2A)

+ λ2LMS-SSIM(G A2B, G B2A) (5)

where the trade-off weights λ1 and λ2 are carefully calibrated
through heuristic experimentation to delicately balance the
model’s focus and achieve the best performance. We mini-
mize this objective function by employing the Adam gradient
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Fig. 5. Simulation model example with rebars placed in deep positions.
Rebar placements are perturbed horizontally to generate unpaired low- and
high-resolution datasets, respectively.

descent method [55], converging this model to a solution that
captures the subtle variances and critical features for effective
GPR image enhancement.

III. EXAMPLES

A. Simulated Data Example: Unpaired GPRMax Data

We first verify the efficacy of our proposed GPR resolution
enhancement technique using simulated data. Traditional con-
volutional models often fail to accurately model GPR wave
propagation in complex subsurface environments. Hence, this
study leverages the GPRMax platform [56], which employs
realistic electromagnetic wave propagation techniques to gen-
erate simulations that closely resemble real-world subsurface
conditions. Using GPRMax-simulated data increases the cred-
ibility of our experimental findings and substantiates the
validity of our method.

We develop two distinct GPR simulation models that incor-
porate concrete layers and subsurface rebars at varying depths.
We first evaluate our proposed method using the more straight-
forward first model, establishing a baseline for performance.
Subsequently, we employ a second, more intricate model to
challenge the network under complex conditions, showcasing
the high adaptability and robustness of our technique. Both
models share the same parameters, except for the varying
depths of an air layer and rebars. In these models, the rebars
have a radius of 0.01 m. The concrete is defined by a relative
permittivity of ϵr = 8, a conductivity of σ = 0.001, and a
permeability of µr = 1.

Fig. 5 illustrates the first GPRmax model, where rebars are
deeply embedded and horizontally aligned. The first model
features an air layer of 0.4 m atop a 0.8-m concrete layer,
with rebars positioned 0.3 m beneath the concrete surface.
The rebar spacings for constructing low- and high-resolution
datasets vary to accommodate unpaired training. Each model
introduces a perturbation ranging from −0.1 to 0.1 m to the
standard 0.56 m interval. This also increases training data
diversity and helps the model adapt to input disturbances,
improving its stability and mitigating overfitting.

Based on two perturbated versions of Fig. 5, we use
two Ricker wavelets [57] of different frequencies as wave
propagation sources to simulate low-resolution and high-
resolution GPR datasets, respectively. For low-resolution data,
we employ a 500-MHz center frequency antenna. In parallel,
a 900-MHz antenna simulates high-resolution data under the
same conditions but with a different model perturbation,
exploiting the superior resolution capabilities of higher fre-
quencies. The receivers, placed on the ground, capture the
reflected waves as the electromagnetic signal propagates. As a
result, we obtain two unpaired datasets.

We trim the low-frequency GPR data to create a training
dataset, with the high-frequency GPR data acting as the

Fig. 6. GPR data based on the deep-rebar model. (a) Simulated low-resolution
data. (b) Simulated high-resolution data. (c) Generated high-resolution data
using weakly supervised learning.

learning target, thus enabling an evaluation of our proposed
CycleGAN’s efficacy on simulated data. Then, we randomly
shuffle the sample patches and their non-paired learning targets
before inputting them into the network for training. The
network training parameters are set as follows: λ1 = 1e−3,
λ2 = 2e−4, a patch size at 256 × 256, a dataset size of
500 patches, a batch size of 4, a learning rate of 2e−4, and a
training duration of 150 epochs. After training, we introduce
additional modest variations in the rebar intervals based on
Fig. 5, differing from the models for generating training data,
and create low-resolution data to validate the transformation
from low-resolution to high-resolution GPR data.

The trained network is applied to the low-resolution in
Fig. 6(a), which is also produced by a 500-MHz center
frequency antenna. The rebars, positioned further from the
concrete surface, generate hyperbolic reflections clearly dis-
tinguishable from the strong direct waves along the time axis.
We also generate high-resolution data on the same model
with the 900-MHz antenna for comparison. As illustrated in
Fig. 6(b), these reflections, considered valid signals, manifest
in a distinct structural pattern. A side-by-side comparison
reveals that the low-frequency antenna produces data with
diminished resolution, leading to blurry reflections. As demon-
strated in Fig. 6(c), our method significantly enhances the
resolution of the GPR data. Notably, the processed data
showcases sharper and clearer waveforms than the original
low-resolution GPR data’s coarser reflected waves. Echoing
the clarity of the simulated high-resolution radar data, the
refined waveforms are more pronounced, signifying a success-
ful enhancement in resolution.

The second model poses a more significant challenge
in discerning useful information and enhancing resolution.
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Fig. 7. Simulation model example with rebars placed in shallow positions.
Rebar placements are perturbed horizontally to generate unpaired low- and
high-resolution datasets, respectively.

Fig. 8. GPR data based on the shallow-rebar model. (a) Simulated low-reso-
lution data. (b) Simulated high-resolution data. (c) Generated high-resolution
data using weakly supervised learning.

As shown in Fig. 7, the rebars are located just 0.1 m from the
concrete surface, and the air layer height is reduced to 0.1 m.
It sets the rebars at a shallower depth, intensifying electromag-
netic interactions with the concrete layer and complexing the
subsurface data profile. We first train the network consistently
with established strategies and parameters. Then, a model
based on Fig. 7 is introduced for network testing and produces
compared results. This model also includes intentional jitters
in rebar spacing to better mimic real-world scenarios. The
simulated comparative GPR data with Ricker wavelets of
different frequencies are more complicated than the previous
model in Fig. 5, as shown in Fig. 8(a) and (b). Testing our
network on Fig. 8(a) outcomes Fig. 8(c). It clearly indicates
that our proposed method markedly enhances the resolution
of low-resolution GPR simulations. Reflected waveforms from
buried objects are more evident. Moreover, the obtained radar
profiles align closely with high-resolution simulated data,
signifying the effective resolution improvement achieved by
our technique.

The amplitude spectrum analysis presented in Fig. 9 further
confirms that our method not only enhances GPR resolution
but also ensures fidelity to the subsurface characteristics, mir-
roring high-resolution synthesized benchmarks. These results

Fig. 9. Comparison of multitrace average amplitude spectra. (a) Deep-rebar
model. (b) Shallow-rebar model.

Fig. 10. Illustration of experimental tunnel model.

underscore the robustness of our approach and its promising
application in real-world field data interpretation, demon-
strating a significant step forward in subsurface exploration
technology.

B. Real-World Example 1: Engineered Tunnel
Structure Detection

Tunnels are vital for underground transportation but are
susceptible to deterioration over time, such as the develop-
ment of cracks or voids behind their linings, which threaten
structural integrity and safety. GPR has become a pivotal tool
for evaluating the health of these structures [58]. To explore
this application, we apply our resolution enhancement method
to data collected from a meticulously constructed tunnel
model, with subsequent detailed analysis of the results. The
model and its internal details are illustrated in Fig. 10. The
controlled environment of the engineered tunnel allows for
precise knowledge of its internal structure, offering a solid
foundation for method validation.

We use two GPR systems to acquire data from this
model, obtaining low- and high-resolution datasets at
400 and 900 MHz, respectively. From these, we form a train-
ing dataset composed of 500 cropped, non-paired data pairs,
each measuring 256 × 256 samples. To guarantee diversity
within the sample set, we randomly shuffle the non-paired
samples and their corresponding learning targets before
inputting them into the network for training. The experimental
setup parallels prior simulations, except for employing a batch
size of 8 and a learning rate set to 1e−4.

Fig. 11 presents comparative graphs from the conducted
survey. As illustrated in Fig. 11(a), the acquired low-resolution
GPR data effectively images deep objects within the simulated
tunnel environment but with compromised resolution. On the
other hand, the high-resolution data shown in Fig. 11(b)
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Fig. 11. GPR data based on the engineered tunnel model. (a) Acquired
low-resolution data. (b) Acquired high-resolution data. (c) Generated
high-resolution data using weakly supervised learning.

Fig. 12. Comparison of multitrace average amplitude spectrum.

captures finer details but at the expense of imaging depth,
exemplifying a prevalent and challenging trade-off in practical
field acquisition. The advancements achieved by our method,
illustrated in Fig. 11(c), demonstrate a significant improve-
ment in resolution at shallow depths, providing a clearer
outline of the targets. The yellow boxes highlight areas where
overlapping reflections previously obscured target signals due
to the tailing phenomenon; these are now distinctly visible,
significantly improving interpretability. Additionally, as the red
arrows point out, the tunnel model contains three plastic pipes
at different depths. The original high-resolution data barely
reveals these objects, whereas our method clearly delineates
them, showcasing a substantial resolution enhancement.

Fig. 12 presents the average amplitude spectrum comparison
of the experimental data. Analysis of these spectra reveals

Fig. 13. Running track for collecting real-world datasets.

that the GPR data produced by our proposed method not
only extends the frequency range but also closely mirrors
the amplitude spectrum of the actual high-resolution measure-
ments. This similarity suggests that our generated data attains
a significant resolution enhancement. The simulated tunnel
experiment validates our approach, showing that it achieves
finer detail and accurate target detection in line with the
known tunnel structure. This thorough assessment confirms
the effectiveness and viability of our resolution enhancement
technique.

C. Real-World Example 2: Running Track Assessment

The safety of public recreational areas, especially heavily
trafficked playgrounds, has garnered widespread attention. Our
study aims to contribute to this area by testing our method on
a playground track.

1) Training Data Construction: The experimental data are
collected from the East Track at Xi’an Jiaotong University,
a standard eight-lane track with a lane width of 1.22 m,
as shown in Fig. 13. We employ GPR systems at two dis-
tinct frequencies to explore the subsurface layers of different
running lanes, yielding GPR data of diverse resolutions. To test
the versatility of our method in complex data acquisition sce-
narios, different recording time parameters are employed. For
low-resolution data, we utilize a 900-MHz GPR on the third
plastic running lane. We set a recording time window of 24 ns,
with 512 sampling points per trace and 100 traces/m. This
process generates 8408 traces used to construct a 2-D profile,
as depicted in Fig. 14(a). In contrast, the high-resolution data
is acquired using a 2-GHz GPR on the fifth lane. This system
employs a shorter recording time window of 12 ns (half that
of the low-frequency GPR). It doubled the data density at
200 traces per meter, resulting in 16504 traces and a data size
of 512 × 16 504.

Though the exploration parameters differ between these
datasets, our method requires only minimal calibration to adapt
to this more realistic scenario. Our technique, grounded in
weakly supervised learning, simplifies the process by elim-
inating the need for pairing training samples with labels.
Essentially, it involves learning transformations between two
different representations of the same target. The only requisite
is that both low- and high-resolution GPR data align with
the same subsurface structure depth. This alignment is pivotal
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Fig. 14. Unpaired training data. (a) Low-resolution data acquired in the third
running lane. (b) High-resolution data acquired in the fifth running lane.

Fig. 15. Examples of cropped patches from the training dataset, with
low-resolution data on the left and high-resolution data on the right.

as it safeguards depth information integrity for each dataset.
To accomplish this, we apply linear interpolation to the low-
resolution data, effectively aligning subsurface features with
their unpaired high-resolution counterparts in the time domain.
For spatial consistency, we employ equal interval sampling to
downsample the high-resolution data and produce Fig. 14(b).
This step guarantees that spatial information is preserved
and consistent across the transformed representations, thereby
enhancing the accuracy of our weakly supervised learning
approach.

In addition, Fig. 14 exemplifies a prevalent and chal-
lenging trade-off in practical field acquisition: the acquired
low-resolution GPR data effectively image deep objects but
with compromised resolution; the high-resolution data capture
finer details but at the expense of imaging depth. We focus
on learning the mapping relationship between low-resolution
and high-resolution data, enabling the network to enhance
the resolution of deep subsurface images without sacrificing
depth penetration. Considering the interference of strong direct
waves in the GPR data, which can hinder deep information
mapping, we apply nonlinear data gain to both low- and
high-resolution GPR data. This step compensates for signal
attenuation during propagation. The preprocessed GPR data
are randomly cropped from the upper half and normalized
for training. High-resolution GPR data patches function as
training targets, while low-resolution data are used as input
for CycleGAN. Fig. 15 showcases cropped patches from
the constructed dataset. Upon completing network training,

Fig. 16. Experimental results for second lane data. (a) Acquired low-reso-
lution data. (b) Acquired high-resolution data. (c) Generated high-resolution
data using weakly supervised learning.

we evaluate the efficacy and suitability of our method using
actual low-resolution GPR data obtained from other running
lanes. The experimental setup parallels prior simulations and
the critical changed parameters for this experiment include a
dataset size of 1000, a patch size of 128 × 128, a batch size
of 8, a learning rate of 1e−4, and a total of 100 epochs.

2) Testing on Second Lane Data: Fig. 16 offers a compar-
ative analysis of data from the second lane. Fig. 16(a) depicts
the low-resolution GPR data with dimensions of 512 × 5916.
These data are directly fed into the trained CycleGAN for
testing. To provide a basis for comparison, we collect actual
high-resolution GPR data, primarily offering enhanced resolu-
tion information for shallow subsurface positions, as depicted
in Fig. 16(b). Our results are illustrated in Fig. 16(c). A com-
parison of these three GPR data profiles reveals the significant
resolution enhancement our method brings about at shallow
subsurface positions, specifically at the location marked 2.7 ns.
The subsurface structures generated by our method closely
mirror the high-resolution GPR data, effectively distinguishing
subsurface information from 0 to 2.7 ns, as pointed out by the
yellow arrow.

Additionally, our method clearly outlines the collapse zone,
as indicated by the red arrow. In contrast to the actual high-
resolution data, which falls short in providing information
on deeper layers, our proposed method leverages the input
low-resolution GPR data to unveil more intricate deep geo-
logical structures (highlighted within the red ellipses). The
subsurface information aligns with the trend of the original
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Fig. 17. Result analysis comparison for second lane data. (a) Multitrace
average amplitude spectrum. (b) Time-domain waveforms for the 2800th
single trace data.

low-resolution data but with an elevated resolution. This
improvement is clearly demonstrated by more pronounced
reflection wave signals in our experimental results, indicating
that our method extracts finer information from deep layers
and elevates deep-layer resolution to par with shallow-layer
data from actual high-frequency radar exploration. This com-
parison underscores the effectiveness and superiority of our
proposed method, especially under challenging conditions.

Fig. 17(a) presents the average amplitude spectrum com-
parison. The blue, yellow, and red lines represent the
amplitude spectra of low-resolution, high-resolution, and our
method-enhanced GPR data, respectively. By enhancing the
resolution on actual low-resolution data, our method captures
detailed subsurface features. It closely mirrors the ampli-
tude spectrum of the high-resolution data with a broader
frequency spectrum. Transitioning to Fig. 17(b), we exam-
ine the time-domain waveforms of individual 2800th traces
from the three GPR datasets. The waveform generated by
our method, symbolized by the red line, closely corre-
sponds with the high-resolution data in the early time axis
positions (1 ns), signifying enhanced resolution. In deeper sub-
surface regions, our method uncovers more valid information
with pronounced fluctuations and finer details, similar to shal-
low low-resolution GPR data. This suggests our method can
generate high-resolution GPR data with significant exploration
depth, effectively balancing resolution and depth.

The low-resolution data mentioned above, ranging from the
2488th to the 2900th traces, are cropped and input into the
network for testing and detailed comparison. The experimental
results are shown in Fig. 18. Fig. 18(a) and (b) displays the col-
lected actual low- and high-resolution GPR data, respectively.
Comparing our results in Fig. 18(c) with them, it is evident
that our method significantly enhances the GPR resolution and
exhibits the following remarkable advantages. In the shallow
subsurface positions indicated by the red arrow, our method
effectively separates the blurred, thick stratum structures in the
low-resolution data. Notably, the structures obtained around
1.5 ns closely resemble the subsurface layers of the actual
high-resolution data and even exhibit distinguishably stronger
energy, proving their reliability. At the position indicated by
the red ellipses, our method captures fine features in the
deep subsurface layers. This is demonstrated by accurately
characterizing the medium reflection waves at that location.

3) Testing on Far Outside Lane Data: To evaluate the
generalization performance of our network, we also test the

Fig. 18. Enlarged experimental results for second lane data from 2488th to
2900th traces. (a) Acquired low-resolution data. (b) Acquired high-resolution
data. (c) Generated high-resolution data using weakly supervised learning.

GPR data collected from the outermost lane (eighth lane). This
is depicted in Fig. 19. A comparative analysis reveals that
our proposed method considerably enhances the resolution,
demonstrating reliable generalization ability. This enhance-
ment is particularly notable in the middle and deep layers,
where many valid subsurface information is recovered. This
recovery suggests that our method can improve resolution and
retrieve crucial subsurface details that might otherwise be lost
or obscured in low-resolution data.

Collectively, these experiments underscore the effective-
ness and reliability of our proposed method in enhancing
GPR data resolution based on the transformation from low-
resolution data, which provides valuable baseline information.
Our proposed method offers the added advantages of faster
processing speed and minimal human intervention. Notably,
our method achieves this enhancement while facilitating
a more profound exploration depth at a higher resolu-
tion. This dual achievement, resolution enhancement and
deeper exploration, sets our method apart and illustrates its
potential for significantly improving GPR data analysis and
interpretation.

IV. DISCUSSION

Our method enhances resolution in GPR data through
image-to-image translation, which has proven effective. How-
ever, several challenges remain to be addressed.
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Fig. 19. Experimental results for data from far outside lane. (a) Acquired
low-resolution data. (b) Acquired high-resolution data. (c) Generated
high-resolution data using weakly supervised learning.

A. Preprocessing Limitations

A critical area of our methodology involves weakly super-
vised learning, which can sometimes be susceptible to
inaccuracies due to the lack of precisely labeled training
data. This can lead to the model developing biases or fail-
ing to generalize across different datasets. To counteract
this, we plan to enrich our training data with more diverse
examples.

Currently, our preprocessing techniques for GPR data
include interpolation, normalization, and nonlinear data gain
adjustments. However, we have not implemented techniques
to address bad traces or suppress high-energy direct waves,
which are crucial for enhancing data quality. The absence of
a dedicated denoise module means our method may struggle
with datasets heavily corrupted by coherent noise, often failing
to recognize high-resolution features accurately and conse-
quently producing artifacts post-enhancement. To address this,
developing advanced noise suppression and trace correction
techniques tailored for GPR data is necessary, which could
significantly improve the clarity and usability of enhanced
images.

B. Computational Efficiency

Our network model has a total parameter size of 339.2 MB,
consisting of 113.2 MB of trainable parameters and 226.0 MB
of non-trainable parameters. The total processing time on a
single NVIDIA 3090 graphics processing unit for the sim-
ulated dataset and the first and second real-world datasets

is 41 348, 13 369, and 33 173 s, respectively. Undoubtedly, the
substantial computational demand poses a significant limita-
tion currently. Nevertheless, deep learning models demonstrate
promising generalization capabilities for datasets with similar
distributions. This offers the potential to process large-scale
GPR datasets from similar geographical areas efficiently.
To address the computational burden without compromising
performance, we will explore more computationally efficient
network architectures.

C. Lack of Physical Interpretation

Our current method lacks interpretability as it is purely
data-driven. To improve this aspect, we plan to integrate
traditional GPR processing methods with generative models.
Embedding physical interpretations directly into the network
architecture could offer a more intuitive and scientifically
grounded approach to GPR data enhancement. In addition,
simultaneous mapping of time domain and frequency domain
data could provide more physical information for resolution
enhancement to preserve geological continuity.

These steps will be pivotal in refining our method and
extending its applicability and robustness in future research
endeavors.

V. CONCLUSION

We present a novel GPR data resolution enhancement
algorithm using weakly supervised learning. The algorithm
aims to tackle a persistent challenge in GPR data acquisition:
the trade-off between exploration depth and resolution. Our
approach leverages the power of a CycleGAN network to learn
the transformation from low-resolution GPR data into unpaired
high-resolution data while preserving exploration depth. Suc-
cessful simulated and real-world applications demonstrate the
robustness and generalizability of our method. It offers practi-
cal advantages such as faster processing speed and minimal
human intervention, making it a promising tool for real-
world applications. Most importantly, our method offers an
innovative, flexible acquisition strategy that eliminates the
requirement for paired low- and high-resolution collections.
This allows for collecting high-resolution data in proximity
to low-resolution data along any path, significantly easing
terrain and logistical constraints. Further research and refine-
ment could focus on extending our method to more antennas
with diverse frequencies and integrating the algorithm into
mobile devices, paving the way for more accurate and efficient
subsurface exploration.
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