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ABSTRACT

Vibroseis acquisition, which uses slip sweep instead of
traditional flip-flop acquisition, could significantly reduce
cycle time and increase productivity. However, the vibroseis
system suffers from harmonically distorted sweeps being
used as correlation operators, thus causing sticky harmonic
distortions in correlated data that cannot be eliminated by
forerunning manipulations and hindering interpretation.
We propose a novel method to separate the harmonic inter-
ferences from correlated vibroseis data by exploring the
waveform diversity between useful reflections and harmonic
interferences. Following the diverse time-frequency distribu-
tion patterns of useful signal components and harmonic in-
terferences, two different redundant waveform dictionaries
are constructed to sparsely model useful reflections and
harmonic interferences. Then, an iterative thresholding algo-
rithm is used to gradually separate harmonic interferences
from useful reflections, with each successive iteration poten-
tially extracting the most reliable waveform elements built
up into the corresponding signal components. The process-
ing results of synthetic and field data examples highlight the
effectiveness of our method in eliminating harmonic noise
without noticeable loss of useful reflections. Compared to
the classic frequency-dependent attenuation method, our
approach has a higher fidelity.

INTRODUCTION

Sustaining data quality and productivity improvements in the land
seismic industry is necessary to fulfill the growing demand for low-
cost, high-density, and wide-azimuth recordings. The vibroseis

system has been widely used in the land seismic industry, becoming
the preferred seismic energy source, especially when international oil
prices fluctuate and remain low. It can support highly efficient seis-
mic production and avoid pollution caused by dynamite sources.

After crosscorrelation with the sweep, vibroseis data produced by
modern equipment using high signal-to-noise recording techniques
commonly deliver well-defined zero-phase wavelets. However, sev-
eral anomalous signals have been shown to occur in the original data
following the correlation process using this recording technique.
Therefore, many methods are used for data enhancement during
vibroseis recording and processing in the field, such as amplitude con-
trol, vibrator phase control, correlation, spike, and spectral noise re-
duction. For example, spike noise arising from uncorrelated data was
challenging because it reproduces the sweep signal in a time-reversed
sequence. This impact may partly or entirely distort the valuable in-
formation in the correlated data, depending on the temporal location
of the spike in the uncorrelated data. This distortion is no longer an
issue in vibroseis data recording when using current recording systems
with real-time spike noise attenuation. But beyond this, harmonic dis-
tortion is another known noise factor that still challenges vibroseis
data recording. Ideally, the vibrator is expected to generate a sweep,
also known as the pilot signal, which is the reference of the funda-
mental component. However, because of the harmonic distortion as-
sociated with the fundamental sweep, the output signal generated by
the vibrator is significantly different from the pilot signal; therefore, it
is referred to as a harmonically distorted sweep. The nonlinear cou-
pling effect between the vibrator and soil is a well-known cause of
harmonic distortions (Lebedev and Beresnev, 2004). Correlated har-
monics produce noise in ghosts multiple times from the primary when
the recorded data are compressed by correlating with the pilot signal
or reference. In addition, in up-sweep surveys, the harmonic noise is
shifted to the negative time domain, whereas in down-sweep surveys,
the harmonic noise is moved to the positive time domain.

Because of nonlinear effects, including the nonlinear coupling be-
tween the baseplate and the ground, the inadequacy of the feedback
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system, and nonlinear effects within the vibrator itself, harmonic
distortion exists in most land vibroseis recordings. The distortion
can significantly obscure the correlated data, thus hindering sub-
sequent seismic processing and stratigraphic interpretation. Research-
ers investigated the vibrator system mechanism and possible
improvements to reduce the harmonic distortion in the output of
ground forces (Wei et al., 2007, 2010).

However, limited by the metal nature of the baseplate, harmonic
distortions are unavoidable in practice under various coupling
conditions between the vibrator and ground, especially on hard and
uneven ground. These harmonic interferences are then investigated
in uncorrelated records and correlated data using signal processing
methods (Baradello and Accaino, 2013). The pure deterministic
phase-shift filter method developed by Li et al. (1995) was the first
signal processing method to successfully eliminate harmonic distor-
tions in the baseplate signal and correlation ghost sweeps. The use
of filtering methods in practice has been widespread. Even so, the
results are typically not optimal because it is intended for analyzing
the uncorrelated data acquired by the traditional single-shot survey
and may not be suitable for efficient slip-sweep acquisition meth-
ods. Using a harmonic prediction operator, Meunier and Bianchi
(2002, 2005) estimate each harmonic and then recursively decom-
pose uncorrelated data into the fundamental and harmonic compo-
nents. By subtracting the harmonic noise from the original data, the
suppression results usually have higher fidelity. By applying the
anticorrelation operator, Zhang et al. (2012) separate the fundamen-
tal and harmonic components of the ground force signal and reduce
harmonic distortions, which is highly applicable. Karsli and Don-
durur (2018) develop an iterative trimmed and truncated mean filter
approach for harmonic noise elimination. As a significant benefit,
an exact estimation of the fundamental frequency of the harmonic
noise is not required. Because the reduction of harmonic noise in
uncorrelated seismic data is low efficiency and requires large
amounts of storage, other methods are also proposed to eliminate
the harmonic noise in correlated data. For example, Dal Moro et al.
(2007) remove harmonic distortions using a technique based on a
genetic algorithm. Sicking et al. (2009) predict and subtract the
harmonic noise based on the recorded ground force. In addition
to being very robust and efficient, this method does not require un-
correlated traces. In addition, a harmonic noise prediction operator
was proposed without ground force signals (Wang et al., 2012). Abd
El-Aal (2010, 2011) presents a strategy for upper harmonic noise
attenuation in the correlated data by simulating harmonic distor-
tions. This algorithm may suffer from a performance problem due
to the absence of adaptation and the method used to estimate the
amplitudes of the frequency domain after the Fourier transpose in
intentionally small sliding windows. Most recently, Denisov et al.
(2021) propose optimal recursive filtering to isolate harmonic noise
from valuable signals.

In the past few decades, various signal processing techniques
based on harmonic analysis have been developed, such as the wave-
let transform, the shearlet transform, the ridgelet transform, and the
curvelet transform. Their primary objectives are to depict the signal
of interest sparsely or identify the specific characteristics. The basis
functions used in these transformations can be thought of as wave-
form atoms, each with its own set of mathematical features and abil-
ities to define the characteristics of the signals that are being
transformed. Generally speaking, if the signal can be constructed
by the linear combination of a minimal number of basis atoms, then
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that means the transform offers a sparse representation of the signal.
The sparse representation is also widely used in seismic signal
processing. Yarham and Herrmann (2008) remove the ground roll
by curvelet-domain sparsity. As described by BoBmann and Ma
(2015), seismic absorption decay signals are sparsely represented
using a Gaussian chirplet model. Xu et al. (2016) develop a seismic
model based on sparse representation and divide the seismic record-
ing into the reflection and ground roll parts. As shown by their suc-
cessful performance in the synthetic seismic data example and the
application to seismic field data, the strong-energy ground roll is
significantly reduced. Moreover, by using the sparse representation
model, the reflected wave waveform is successfully preserved. Sim-
ilarly, harmonic noise reduction also uses this technique. Yu and
Garossino (2005) propose frequency-dependent noise attenuation
(FDNAT), which decomposes the seismic signal with wavelet trans-
form. Wang et al. (2018) train an adaptive dictionary and suppress
the harmonic distortions based on the diverse waveform morphol-
ogies between the useful signals and harmonic noise.

Sparse representation has made significant achievements in recent
years. Only one specific transform is usually highly ineffective when
representing complicated field seismic signals. The ideas naturally
turn out to form an overcomplete dictionary by incorporating several
distinctive transforms, potentially showing the promising capability
to represent complex seismic signals sparsely. As a typical case of
constructing an overcomplete dictionary, morphological component
analysis (MCA) was introduced and achieved good results. For ex-
ample, Turquais et al. (2016) propose a sparsity promoting morpho-
logical decomposition to suppress coherent noise. In addition, MCA
also can be applied to robust dip estimation (Cai and Ma, 2019) and
acquisition footprint suppression (Liu et al., 2021).

The commonly used methods either depend on sweep and ground
force signals or suffer from the complexity of harmonic noise. This
paper proposes a technique using redundant waveform dictionaries to
model and distinguish different signal components by considering
their time-frequency spectra diversity. Following the assumption of
MCA, two various waveform dictionaries are selected to characterize
useful signals and harmonic noise, respectively. The separation is fa-
cilitated by iteratively exploring the sparsity of one signal component
in the overcomplete dictionary while keeping the other component
fixed. Results from synthetic and field data show the effectiveness
of the proposed method.

METHODS

Starck et al. (2004) develop the MCA theory, which decomposes
the signal into several components sparsely using the overcomplete
dictionary. The MCA makes the two following assumptions.

Assumption 1: The signal is assumed to be a linear superposition
of n distinct morphological features, whereas each is sparsely rep-
resented by one corresponding separate dictionary. In other words,
each signal component can be described with a dictionary @,
and the corresponding sparse representation x;. The signal can
be expressed as follows:

s:Zsk:Zd)kxk. (1)
=1 =1

Assumption 2: MCA assumes that, for every specific component
Sy, one appropriate dictionary used for decomposition can produce a
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highly sparse representation, whereas the other dictionaries @
can only provide nonsparse decomposition, that is,

V{kjte{l....n}; j#Ek= | Risillo<l[@isillo- ()

The I norm measures sparseness, which means that the sparsest
decomposition has the fewest nonzero coefficients.

With these two assumptions satisfied, we can provide the spar-
sity-promoted signal separation model. The following optimization
model calculates the decomposition coefficients x; for representing
the corresponding signal components:

arg min Z [[x¢llo subject to s = Z(I)kxk. 3)
{Xlw--vxn} k=1 k=1

The optimization problem consists of two terms. One is the ob-
jective function by minimizing the sparseness measure, and the
other is the data-fit term. However, this problem is a nondetermin-
istic polynomial (NP)-hard problem because of the use of the [,
norm. The MCA method makes this optimization problem solvable
by substituting the /, norm by /; norm and relaxing the equality con-
straint through minimizing (Starck et al., 2005)

. n 1 n
argmin2 ) _ || ®fs ||, +§|\S—Zsk||§- @
k=1

Spyenns Sn =1

According to morphologic appearance in slip-sweep correlated
recordings, seismic data primarily comprise body waves, ground
roll, harmonic distortion, and random noise (Li et al., 2015). Here,
we discuss the attenuation of harmonic noise. Meanwhile, the body
and ground roll waves are referred to as the signal components
(abbreviated as the signal), whereas harmonic noise is the noise
component. A seismic record is then expressed as

S:Sr+sh+sn’ (5)

where s, represents the signal, s;, represents the harmonic noise, and
s, is the random noise. Separating the signal from harmonic noise
with MCA seeks to solve

argmin|x, |+ %1, s.t.[s—@,x,~@,x, <. (6)
X Xp

where @, and @, playing a role of discriminants between the sig-
nal s, and harmonic noise sy, are the sparse representation diction-
ary for signal s, and harmonic noise s;,, respectively. The vectors of
signal and harmonic noise coefficient are x, and xj,, respectively,
and ¢ is a threshold for reconstruction error and represents an es-
timate of random noise. An unconstrained optimization problem
can precisely replace the constrained optimization in equation 6
through an appropriate Lagrange multiplier:

1
{(xP, x)P'} = argmin = ||s — ®,x, — ®;x,,[|3
{x-x} 2
+ AU+ lxall)- )

The minimization of the objective function in equation 7 can be
handled by the block-coordinate relaxation (BCR) technique
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through the iterative hard threshold operator to calculate optimized
x,* and x;”" (Bruce et al., 1998; Elad et al., 2005).

The MCA theory shows that the feasibility of separating signals
relies on the inconsistency between dictionaries, and each diction-
ary should lead to sparse representations of the corresponding signal
component. Thus, choosing proper signal representations is the
critical issue for our problem.

The signal and harmonic noise have different time-frequency
distribution characteristics, as shown in Figure 1. In general, useful
seismic signals are represented as the convolution of the source
wavelet and the reflectivity series. Therefore, useful signals after the
wavelet transform produce localized regions centered on the domi-
nant frequency of the source wavelet. In contrast, harmonic noise
consists of slanted lines of varying slopes. Correspondingly, we
can select two dictionaries with different time-frequency distributions
to separate them. The wavelet transform is one efficient tool for
sparsely representing seismic signals because the mother wavelet
function is similar to the seismic wavelet. Therefore, we anticipate
that useful signals, such as body waves and ground roll, are prone
to be sparsely represented with the wavelet transform. However, har-
monic noise is well known for its linear distribution in the time-fre-
quency domain. Technically speaking, a tailored tool, namely, the
chirplet transform, is ideally suited for analyzing chirp-like signals.
Its time-frequency atoms are best suited to describe such kinds of
signal components. Thus, we use the chirplet transform as the rep-
resentative dictionary for harmonic noise components.

Wavelet transform

Wavelet analysis is used to convert the investigated signal into a
desirable temporal and spectral representation, contributing to sig-
nal analysis and processing improvement. Usually, the mother
wavelet should have the same waveform as the reflected wavelet.
The continuous wavelet transform of the signal s(7) is defined as the
correlation between the signal and the dilated and shifted wavelets
as follows:

WT, (a,7) = —— /_  s(0)y* <’ - T) dr, @®)
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Figure 1. The time-frequency distribution of a typical seismic trace
contaminated by harmonic noise.
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where a is the scaling factor; z denotes the time shift; y(7)
corresponds to the mother wavelet, such as shown in Figure 2a;
the asterisk represents the complex conjugate operation. After
MCA separation, the denoised data can be calculated by

A 1 1 —
5,.(0) :EK/GEWTS(LI,T)U/Ca—T)dadT, )

Liu et al.

where the  admissibility condition is  satisfied by
¢V = [((|¥(®)]*)/w)dw < +0, and ¥(w) is the Fourier trans-
form of w(t).

Chirplet transform

As a time-frequency representation technique, the chirplet transform
(Mann and Haykin, 1995) uniquely incorporates a frequency-depen-
dent resolution with the simultaneous localization
of the real and imaginary spectra. By manipulating
the basis function with the shift, shear, and scaling
operators, a 5D parameter space for the energy
density is obtained. By time and frequency shift,
as well as by time shift and scaling, this space in-
cludes projections of the appropriate densities ob-
tained from a short-time Fourier transform, as well

a) b)

3 3

E £
Time

Time

as projections of a wavelet transform. It is worth
noting that the chirp operation on the frequency
axis is omitted to fit the waveform of the harmonic
noise better, resulting in a more accurate represen-
tation of the harmonic noise. In mathematical form,
the chirplet transform can be formulated as fol-
lows:

Figure 2. (a) Continuous wavelet transform’s kernel function and (b) chirplet trans-

form’s kernel function modulated by a Gaussian function.
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Figure 3. The sparsity comparison with wavelet transform and
chirplet transform. (a) The sparsity of signal obtained by wavelet
transform and chirplet transform and (b) the sparsity of harmonic
noise obtained by wavelet transform and chirplet transform.

CT,(t,f,a,c) = /s(‘r)h*(r —t,f,a,c)dr, (10)

where

t . o
]’l(t, f, a, C) = g(a> e]ﬂ2fl+1ﬂc-(a)2 (1

and

9(1) = <1 e—%(é)z>7_ (12)
2o

Similarly, a denotes a scaling parameter, ¢ corresponds to a linear
frequency modulation factor, and k(#, f,a, c) is the chirplet kernel
function modulated by a Gaussian function g(¢) (Figure 2b). After
the MCA separation, the suppressed harmonic noise can be computed
b

y
§h(t):[L/f[CTS(t,f,a,c)h(r—t,f,a,c)drdfdadc,
13)

which is the inverse chirplet transform.

Sparsity analysis

Figure 3 illustrates the time-frequency analysis of the signal and
the separated harmonic distortion by the proposed method. Wavelet
and chirplet transforms are applied to decompose the signal and
isolate harmonic noise. The comparison is obvious and intuitive.
The wavelet transform is prone to capturing the transient variations
of signals but spreads its delineation for the linear structures in the
time-frequency domain. In contrast, the chirplet transform is better
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fitted to characterize the linear time-frequency relationship but fails
to render the characteristics of transient signals. The sparsity of each
signal component is measured in the two transform domains and
listed in Table 1. The sparsity comparison again proves our obser-
vations. The signal is represented by much fewer nonzero coeffi-
cients in the wavelet domain, whereas the harmonic noise shows
much fewer nonzero coefficients in the chirplet domain. Therefore,
the two dictionaries that we choose are suitable and satisfy the MCA
assumptions.

EXAMPLES

This section illustrates applications of the proposed method by
suppressing the harmonic noise of synthetic data and a field seismic
data set.

Synthetic data test

To verify our method’s effectiveness of harmonic noise suppres-
sion, we first evaluate our approach on synthetic model data, as
displayed in Figure 4a. This model comprises 301 traces and
has a temporal resolution of 0.002 s. In Figure 4a, it is noticeable
that harmonic noise marked by the arrow severely contaminates

Table 1. The sparsity comparison of different signal
components using wavelet transform and chirplet transform.

Dictionaries Signal Harmonic noise
Wavelet transform 0.0337 0.1709
Chirplet transform 0.1821 0.0155

The sparsity is measured by the ratio between the number of nonzero coefficients and
the dimension of the coefficient vector.

a) Trace number b)

1 101 201 301 1 101

Trace number c)

the original data, posing significant problems to interpretation.
Figure 4b and 4c illustrates the signal and noise separation results,
respectively, obtained by the proposed method. From an in-depth
comparison of Figure 4b with Figure 4a, we can see the success of
harmonic noise reduction. The results of the 100th trace in Figure 4
are shown in Figures 5 and 6. Comparing the original signal with
the separated signals and separated harmonic distortion in the spa-
tial-temporal domain in Figure 5, high-fidelity signals are success-
fully recovered, and harmonic distortion is eliminated effectively.
Figure 5 shows that our approach offers the primary benefit of
preserving the signal with high fidelity. Likewise, from the results
in the time-frequency domain, we can observe that the distribu-
tions of the valuable signal exhibit different characteristics from

a) : : : : :
S 2000 - t -
2
E 2003
< B L 1 L 1 A 1 |
b)
g 200 l
E 0
£ —2000 - 4
©)
o 200
©
=1
= 0
Qo
£
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Figure 5. The analysis of the 100th trace data extracted from Fig-
ure 4 in the time domain: (a) the original records, (b) the recovered
signal, and (c) the removed harmonic distortion.

Trace number
201 301 1 101 201 301

Time (s)

Figure 4. The results of signal and harmonic noise separation by our proposed method: (a) the original records, (b) the obtained signal, and
(c) the removed harmonic noise. Our proposed method successfully suppresses harmonic noise with minimal degradation of useful signals,
despite the fact that the harmonic noise marked by the arrow in (a) severely contaminates useful signals.
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the removed harmonic noise which corresponds to oblique lines,
thus confirming the successful elimination of harmonic noise.

Field seismic data test

The results from the synthetic data indicate that the proposed
approach can remove harmonic noise effectively with satisfactory
preservation of the high-fidelity signal. To further illustrate the

Figure 6. The analysis of the 100th trace data ex- )
tracted in Figure 4 in the time-frequency domain: 100
(a) the original records, (b) the recovered signal,

and (c) the removed harmonic distortion.
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effectiveness of the proposed method for harmonic noise attenuation,
we apply it to a section of a correlated slip-sweep seismic
record acquired from western China, as shown in Figure 7a. This
seismic field data set includes 396 traces with a trace interval of
25 m, and the temporal interval is 0.002 s. Using the proposed
method to separate signals and harmonic noise, we set the iteration
number of MCA to 30, and 4 decreases exponentially from 800 to the
average Fourier transform value of each trace data. The parameters

<0t b) «10° ©)
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Figure 7. Field data results. (a) Original seismic record, (b) recovered signals by our proposed method, (c) removed harmonic noise by our
proposed method, (d) recovered signals by FDNAT, and (e) removed harmonic noise by FDNAT. The arrows indicate that FDNAT causes
signal leakage, but the proposed method preserves the structure of the signal better. The black boxes depict the magnified area for Figure 8.
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Figure 8. (a-e) Magnified view of the results bounded by the black box in Figure 7a—7e, respectively. (a) Original seismic record, (b) recovered
signals by our proposed method, (c) removed harmonic noise by our proposed method, (d) recovered signals by FDNAT, and (e) removed
harmonic noise by FDNAT.
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a and ¢ of the chirplet transform are kept at a constant value of 0.5
and 1.0, respectively. The Gaussian function length is set to be 512.
The continuous wavelet transform has 54 decomposition scales.
The FDNAT method (Yu and Garossino, 2005), which attenuates
harmonic noise in decomposed frequency bands after being trans-
formed into the time-frequency domain by a time-frequency analy-
sis tool, is commonly used in industry. By using
frequency-dependent and time-variant amplitude

V189

of three stacked data for comparison are shown in Figure 12. We can
see that the spectra of the proposed method and FDNAT are very
similar, but the energy of our method is slightly higher than that of
FDNAT. The higher energy is because the fidelity of our method is
better than FDNAT, which means that the waveform consistency of
our useful signals is better than FDNAT. Hence, the stacked signals

&
~

threshold values in defined trace neighborhoods,

it can detect and suppress noise corresponding 20
to different frequency ranges and time windows. 0 ‘I
The threshold values can be calculated adaptively —20°
by calculating the average amplitude of sampling )
points in the time window. The strong adaptability 20

and easy implementation make FDNAT a widely
used module to suppress harmonic noise in com-
mercial software applications, so we choose it as

|
N
S o

our baseline method. To apply FDNAT, we set the
trace window size as 21, the time window size as
400 ms (200 samples), the sliding time window as

N
o

2. Amplitude & Amplitude & Amplitude
o

200 ms (100 samples), and every 10 Hz between 3 —20
and 83 Hz makes up the decomposed frequency )
bands. § 201
The elimination results of harmonic noise are % 0
displayed in Figure 7b—7e. Comparing the sig- £ L
< —20
nals obtained by the proposed approach in Fig- e)
ure 7b with the signals obtained by the FDNAT 2 200
method in Figure 7d, the FDNAT method seems 2
to suppress more noise and output a better noise- ?EL 0
free result. However, the proposed method pre- <—20

serves signal better, especially for typical first 25
breaks and shallow reflections. Comparing the
harmonic noise obtained by our approach in

Time (s)

Figure 7c with the harmonic noise removed by
the FDNAT method in Figure 7e, we also verify
the effectiveness of the proposed method from
the separated harmonic noise aspect. Our ap-
proach can precisely identify and extract the har-
monic noise with little signal energy observed in

Figure 9. Comparison of the separation results with the 256th trace data which is
located at 1.45 km in Figure 7. (a) The original records, (b) the recovered signal by
the proposed method, (c) the recovered signal by FDNAT, (d) removed noise by the
proposed method, and (e) removed noise by FDNAT. It can be seen that, in comparison
to the proposed method, the FDNAT method causes obvious damage to the deep-layer
effective wave, as indicated by the arrows in (b and c). Furthermore, after the reduction
of harmonic noise using the FDNAT method, residual harmonic energy can be detected
in the deep layer.

the estimated noise panel. However, there is no-

ticeable signal leakage in the noise estimation of

the FDNAT method. We can see the superior performance of the
proposed method in Figure 8 with the magnified rectangle areas
marked in Figure 7.

The 256th trace located at 1.45 km of the original record and the
corresponding signal parts generated by the proposed method and
the FDNAT method are shown in Figure 9. Furthermore, their
corresponding spectra are analyzed in Figure 10. Compared with
the proposed method, the FDNAT method damages useful signals,
primarily the late reflections. The result obtained by the proposed
method is more reliable and has less signal leakage. We also can
prove it from their spectra because the high-frequency energy of
our approach is smaller. Then, we stack the original prestack data
in Figure 11a. The stacked section shows apparent harmonic noise
disturbances. Denoising harmonic noise with these two methods
results in significantly improved stacked profiles, as shown in Fig-
ure 11b and 11d. However, the result obtained by the proposed
method shows a higher signal-to-noise ratio and more coherent re-
flections and is also favorable for thin-bed reflections. The spectra
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=-==Our method
- 'FDNAT

Amplitude (dB)

Y
HIRTAWL)
T
H (HRVEAY; \
d ity vy
by
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Figure 10. The corresponding spectra of the data shown in Figure 9
for a time window of 1.5-4.0 s.
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Figure 11. Stacked profiles. (a) Original seismic record, (b) recovered signals by the proposed method, (c) noise removed by the proposed
method, (d) recovered signals by FDNAT, and (e) noise removed by FDNAT. Black arrows indicate that the result obtained by the proposed
method has a higher signal-to-noise ratio and more coherent reflections. When examining the regions indicated by yellow arrows, it is evident
that FDNAT damages the useful signals, whereas our proposed method has a higher fidelity.
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Figure 12. The spectra of the stacked data shown in Figure 11.

have a higher amplitude. These results also prove the effectiveness
of our proposed method.

CONCLUSION

In this work, we propose a practical approach to suppress har-
monic noise in slip-sweep data. Our method is based on MCA
and exploits waveform differences between useful reflections and
harmonic interferences. The construction of the different waveform
dictionaries, also known as mathematical transformations, is an es-
sential step. To sparsely represent the signal and harmonic noise, the
wavelet transform and chirplet transform are used, respectively. The
signal and harmonic noise are then iteratively separated using the
BCR method. The results of the synthetic data and field slip-sweep
data show that our method successfully eliminates the harmonic
noise while causing no noticeable damage to useful signals. Further-
more, our approach is not dependent on the ground force signal. As
a result, processing effectiveness may be substantially increased
compared with techniques that rely on ground force signals. The
presented method is data-driven and implemented trace-by-trace.
Therefore, it is more convenient and robust than the schemes
of suppressing harmonic noise from the shot data. In addition,

single-trace processing makes it easy for parallel computing to meet
practical requirements.
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