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ABSTRACT

Investigating coherent noise attenuation is a continuing con-
cern within seismic signal processing. As a common type of
linear coherent noise, the multiple reflection-refraction (MRR)
occurs in seismic records in which low-velocity strata overlie
high-velocity strata, such as deserts, the Loess Plateau, etc.
Due to its high velocity and strong energy, MRR seriously dis-
torts the reflections and affects the interpretation. MRR has lin-
ear morphological characteristics on the shot gathers. Thus, a
linear Radon transform with a surgical mute is usually applied
to suppress MRR. However, significant numbers of shallow re-
flections are removed unintentionally in the τ-p domain when
reflections overlap MRR. Therefore, a robust method that re-
duces the leakage of reflection energy is required. We have de-
veloped a novel method to attenuate MRR by examining the
morphological difference between MRR and useful signals in

the τ-p domain. MRRs are oblique linear events on the shot re-
cords, whereas the useful signals are quasi-hyperbolic events
under the assumption of horizontal layers. After the high-reso-
lution linear Radon transform, MRRs are ideally mapped into
point features, whereas the useful signals are aligned with nar-
row curve bands in the ellipse. To better separate them in the τ-p
domain, we use the morphological component analysis (MCA)
theory and select the 2D stationary wavelet transform and the
shearlet transform as sparse representation subdictionaries of
point features and curved features, respectively. After MCA sep-
aration, we apply the inverse Radon transform to the separated
MRRs and subtract them from the original seismic data. Sub-
traction can better preserve the amplitude of reflections. We
use synthetic data and field data to illustrate the effectiveness
of our method and demonstrate that making full use of the pre-
ceding morphological differences can improve the results of
MRR attenuation.

INTRODUCTION

Attenuating coherent noise has been studied by many researchers,
but it is still an unsolved problem in seismic signal processing in
certain situations. As one type of prominent linear coherent noise,
the multiple reflection-refraction (MRR) is an important wave phe-
nomenon in exploration areas with a complex surface, especially on
shallow-water seismic profiles or in areas with a low-velocity strati-
graphic structure. We use Figure 1 to illustrate the generation mecha-
nism of MRR waves. When the seismic signal is incident from the
overlying low-velocity stratum to the top surface of the underlying

high-velocity stratum along the same raypath repeatedly, multiple re-
flections occur. At the same time, they produce refracted waves.
When the incident angle of multiple reflected waves is equal to
the critical angle, the refracted waves travel horizontally along the
interface on the top surface of the underlying high-velocity stratum.
Then, MRRs occur when they reach the receivers after they are re-
flected back to the free surface (Li, 1983; Qin, 1990). MRR typically
has higher velocities and exhibits lower dips than useful reflections
on shot records. In addition, this type of wave sometimes has very
strong amplitudes, severely distorting the far offsets of early arrivals
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and affecting the signal-to-noise ratio (S/N) of seismic records. Thus,
discriminating and suppressing MRR events are vitally important.
To date, various studies have investigated coherent noise attenu-

ation, and they can be classified into seismic acquisition and seismic
processing. A suitable acquisition geometry design can enable ad-
equate wavefield sampling and reduce coherent noise amplitude
from the source. For example, scattered noise can be completely
removed in the areal geometry with adequate spatial sampling,
and Vermeer (2008) demonstrates that single-point orthogonal
geometry can also be applied to suppress scattered noise. Moreover,
wide-azimuth geometry can improve multiple attenuations (Meu-
nier et al., 2008). As for the problem of MRR suppression, Liang
(1993) finds that MRR energy increases as the shot-receiver offset
increases. Accordingly, with an appropriate acquisition geometry
layout, e.g., increasing the coverage fold, the MRR amplitude
can be reduced. In addition, other seismic acquisition technologies,
such as the symmetric sampling method (Vermeer, 1998) and spec-
trum shaping (Steeples, 2005), also help to suppress MRR. How-
ever, acquisition geometry design should consider efficiency and
economics and the optimum acquisition geometry often is unafford-
able. In addition, such methods are powerless against existing seis-
mic data. Therefore, the greater part of the literature on coherent
noise attenuation focuses on seismic data processing.
Several signal-processing filtering methods have been proposed

and applied to suppress coherent noise. By designing a suitable
high-pass filter, the low-frequency ground-roll components can
be filtered out trace by trace. Following that, Chen et al. (2015)
combine a band-pass filter with local orthogonalization to improve
ground-roll separation. Due to the frequency overlap between MRR
and the desired seismic reflections, a simple band-pass-filtering
method is unable to effectively remove MRR without harming
the reflections. The f-k filters also are standard methods for sup-
pressing coherent noise. For example, Al-Husseini et al. (1981)
use the f-k filter to attenuate ground roll. Aiming at MRR attenu-
ation, the f-k filtering method is a practical method as well. How-
ever, it distorts reflections when the amplitude of MRR events is
much stronger than the desired reflection. Another well-known
method is filtering coherent noise in the τ-p domain based on
the apparent velocity difference between the reflection and coherent
noise (Kabir and Marfurt, 1999; Yu et al., 2007; Ibrahim and Sacchi,
2014). After the linear Radon transform, a hyperbolic reflection is
mapped into an ellipse, whereas the linear coherent noise is mapped
into a point (Durrani and Bisset, 1984). For instance, the linear
ground roll has a point feature in the τ-p domain and can be

removed by subtraction strategies (Trad et al., 2003). MRRs are
characterized by several groups of parallel oblique events on shot
gathers, and they have a certain constant apparent dip in each group.
The linear morphological characteristics of MRR make noise at-
tenuation in the τ-p domain a commonly used method. However,
a direct mute in the τ-p domain may damage the desired reflections
when MRR has similar apparent velocities with reflections. There-
fore, a better separation method in the τ-p domain is required to
ameliorate the muted out results and to adaptively suppress
MRR noise.
With the high-resolution linear Radon transform, MRR noise is

characterized by point features, whereas reflections exhibit curved
features. Relying on the previously mentioned morphological fea-
ture difference in the τ-p domain leads to appealing MRR separa-
tion. Research into morphologically decomposing a signal into its
building blocks has a long history. Up to now, several techniques
have been developed to tackle this problem, such as blind source
separation (Liu and Dragoset, 2013) and independent component
analysis (De Lauro et al., 2009). Interestingly, sparsity also receives
considerable scholarly attention and is widespread in signal sepa-
ration. The sparse representation theory (Rubinstein et al., 2010)
also becomes an important aspect of seismic data processing
(Ma et al., 2010). Driven by sparsity, Starck et al. (2005) propose
morphological component analysis (MCA) for image separation,
using two different dictionaries to achieve a sparse decomposition
of texture and illustrate parts of the image. As an effective sparsity-
based method for signal decomposition, MCA also plays a vital role
in separating seismic coherent noise. Wang et al. (2012) use MCA
to attenuate ground roll and construct two dictionaries using the
stationary wavelet transform with different scales to represent
ground roll and reflections, respectively. Furthermore, Chen et al.
(2017) construct two dictionaries using tunable Q-factor wavelet
transforms with different Q factors to suppress ground roll. Overall,
these studies confirm the strong separation ability of MCA and
highlight that the dictionaries selected for decomposition play a cru-
cial role in guaranteeing efficient separation with MCA.
Inspired by the MCA theory, we propose a novel linear coherent

noise attenuation method based on waveform morphology
differences in the linear Radon domain. First, a high-resolution lin-
ear Radon transform is applied to the original seismic data, mapping
the reflections into the curved morphological features and the MRR
noise into point morphological features. Then, the 2D stationary
wavelet transform (2D-SWT) and the shearlet transform are se-
lected as sparse representation dictionaries of curved morphological
component and point morphological component, respectively. After
that, the block coordinate relaxation algorithm (Sardy et al., 2000) is
used to separate the point morphological component iteratively. Fi-
nally, the linear coherent noise component is reconstructed by the
inverse Radon transform, and the separated MRR noise is sub-
tracted from the original data, thus suppressing the linear coherent
noise. The application of synthetic data and a 2D common-shot
gather of field data demonstrate our method’s effectiveness in at-
tenuating MRRs.

THEORY

The detailed procedure of the proposed method for attenuating
MRR is illustrated in Figure 2. This section introduces the high-res-
olution linear Radon transform, MCA theory, and the dictionaries
chosen for sparsely representing the reflections and MRR noise.Figure 1. The raypath of an MRR wave.
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High-resolution linear Radon transform

The Radon transform proposed by Radon (1986) is an integral
transform and has been an important tool for image analysis
(Al-Shaykh and Doherty, 1996) and signal reconstruction (Lanza-
vecchia et al., 1999). Recently, a growing body of literature has in-
vestigated the applications of Radon transformations in the
exploration geophysics field (Lu, 2013; Xue et al., 2014; Kazemi
and Sacchi, 2021). MRR possesses the characteristics of linear mor-
phology, and such linear features are transformed into a point by the
linear Radon transform, making it easier to distinguish them from
the reflections. Therefore, we suppress the MRR in the τ-p domain
using the linear Radon transform.
We define the formula of the linear Radon transform as

mðτ; pÞ ¼
Z þ∞

−∞
dðt ¼ τ þ px; xÞdx: (1)

Here, dðt; xÞ denotes the seismic signal, τ is intercept time, p is
apparent slowness, and mðτ; pÞ denotes the Radon coefficients.
The τ-p transform is a discretized Radon transform and can be ex-
pressed in matrix-vector notation as

d ¼ Lm; (2)

where d and m represent the data and model, re-
spectively, and L denotes the forward operator of
the linear Radon transform. The estimated Radon
coefficients can be calculated using the adjoint
operator LT by

madj ¼ LTd: (3)

Because the linear Radon transform is not an
orthogonal transformation, it is intractable to
compute madj directly through the adjoint trans-
formation, which is a major obstacle to applica-
tions in the seismic data processing. Therefore,
the Radon coefficients em can be calculated with
the least-squares solution by posing an inverse
problem (Thorson and Claerbout, 1985):

~m ¼ ðLTLÞ−1LTd: (4)

To obtain a better resolution and to reduce the
smearing problem in the Radon panel, Sacchi
and Ulrych (1995) introduce the sparsity con-
straint and estimate the high-resolution Radon
coefficients by minimizing the objective func-
tion:

J ¼ kd − Lmk22 þ λkmk1; (5)

where λ denotes a trade-off parameter to balance
the l2-norm data misfit and the l1-norm model
constraints. We define a model weight matrix
W with diagonal elements proportional to the
ith element of m, as shown in the following
equation:

wi;i ¼
1ffiffiffiffiffiffiffiffijmij

p : (6)

Thus, the l1-norm regularization can be transformed into an l2-norm
regularization because

kmk11 ¼
X
i

jmij ¼ mTWTWm ¼ kWmk22: (7)

Prior studies have noted the importance of adding a minimum
threshold to the denominator to avoid dividing by zero (Trad et al.,
2003). We set this hyperparameter to 10−5 according to our tests.
Then, the objective function in equation 5 can be expressed as the
following quadratic objective function:

Jq ¼ kd − Lmk22 þ λkWmk22: (8)

Denoting u ¼ Wm, equation 8 can be reformulated to a standard
form by

Jq ¼ kd − LW−1uk22 þ λkuk22: (9)

The minimization of equation 9 produces the following equation:

Figure 2. The procedure of the proposed method for MRR attenuation.

Linear noise suppression V369

D
ow

nl
oa

de
d 

06
/2

6/
22

 to
 1

42
.2

44
.5

.3
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
21

-0
46

8.
1



ðW−TLTLW−1 þ λIÞWm ¼ W−TLTd; (10)

where I represents the identity matrix. Solving equation 10 is a large
ill-conditioned problem and time-consuming. In practice, the con-
jugate gradient method (Scales, 1987) is frequently used to solve
this least-squares matrix inversion to increase the computation ef-
ficiency. Moreover, the conjugate gradient method is satisfactory
because it does not require matrices in explicit form when using
the time-domain Radon operators. After suitable iterations are car-
ried out, the high-resolution linear Radon transform can focus linear
MRR events into points for subsequent separation. It is worth men-
tioning that the choice of the range of p should be deliberate. The
subsurface geologic conditions determine the velocity range of seis-
mic waves and further the dip range of MMRs. Therefore, we use
this prior knowledge to select the appropriate slowness range for the
Radon transform, which helps to achieve fast and accurate MRR
attenuation.

MCA

Based on the sparse representation theory (Chen et al., 2001),
Starck et al. (2005) propose the MCA approach for separating dif-
ferent components of a signal according to the morphological
differences of each component. The core idea of MCA is to con-
struct overcomplete sparse representation dictionaries by combining
together different dictionaries, each of which has a different atomic
characteristic and can identify a certain morphological component
of the signal. Taking an input signal s ∈ RN×1 as an example, we
assume that it is a linear superposition of two signals s1 and s2,
i.e., s ¼ s1 þ s2, and they have different morphological features.
We note that the two signals here are only for the sake of simplicity,
and MCA can handle more than two signal components in a similar
manner. MCA makes the following assumptions:
Assumption 1: s is composed of two different morphological fea-

tures. Correspondingly, there are two sparse representation overcom-
plete dictionaries, and each signal component siði ¼ 1;2Þ can be
sparsely represented by one of the dictionaries by computing the co-
efficients xi ∈ RLi as follows:

xopti ¼ argmin
xi

kxik0 s:t: si ¼ Dixi for i ¼ 1;2; (11)

where Di ∈ RN×Li (typically Li ≫ N) is an overcomplete dictionary
for si and xopti is the sparse solution, i.e., kxopti k0 ≪ N. The l0 norm
counts the total number of nonzero elements of a vector.
Assumption 2: For any given component si, the other dictionary

Djði ≠ jÞ leads to a nonsparse solution by

∀ fi;jg∈ f1;2g; xoptij ¼ argmin
xij

kxijk0 s:t: si ¼Djxijði≠ jÞ;

(12)

where the l0 norm of coefficient kxoptij k0 > kxopti k0, which means
that si are represented very inefficiently by the dictionary Dj.
Based upon the preceding assumptions, MCA is proposed to seek

the sparsest representations of signal s over the augmented dictionary
composed of D1 and D2 (Elad et al., 2005). Thus, we need to com-
pute

fxopt1 ;xopt2 g¼argmin
fx1;x2g

kx1k0þkx2k0 s:t:s¼D1x1þD2x2: (13)

By solving equation 13, we can obtain the representation coefficients
of the two components of x and successfully separate the two com-
ponents. However, this optimization problem is a nonconvex and
nondeterministic polynomial (NP)-hard problem, indicating that
the computational complexity grows exponentially with the number
of columns in the augmented dictionary. To convert it to a solvable
optimization problem, we replace the l0-norm constraint with an l1-
norm constraint and relax the equality constraint, thus leading to the
convex minimization problem (Starck et al., 2005):

fxopt1 ;xopt2 g¼ argmin
fx1;x2g

ks−D1x1−D2x2k22þλðkx1k1þkx2k1Þ;

(14)

where λ is the Lagrange multiplier to balance the misfit term and
constraint term. Equation 14 can be solved by the block coordinate
relaxation method (Sardy et al., 2000) through the iterative calcula-
tion of the following subproblems:

xkþ1
1 ¼ argmin

x1
ks − D1x1 − D2xk2k22 þ λkx1k1; (15)

xkþ1
2 ¼ argmin

x2
ks − D1xk1 − D2x2k22 þ λkx2k1: (16)

Each subproblem is a typical l2 − l1 sparse optimization problem and
can be solved by the iterative soft-thresholding algorithm (Donoho
and Johnstone, 1994):

xkþ1
1 ¼ SλðD†

1ðs − D2xk2ÞÞ; (17)

xkþ1
2 ¼ SλðD†

2ðs − D1xk1ÞÞ; (18)

where D†

1 and D†

2 are the Moore-Penrose pseudoinverse of D1 and
D2, respectively. The variable Sλ is the soft-thresholding operator
with a threshold λ:

SλðaÞ ¼
�
a − λ signðaÞ; jaj ≥ λ

0; others
: (19)

After termination of the iteration procedure, we obtain the separated
components by

s1 ¼ D1x
opt
1 ; (20)

s2 ¼ D2x
opt
2 : (21)

According to MCA theory, we assume that the original seismic
data in the τ-p domain m are the superposition of the reflections of
useful signal mr, linear MRR events ml, and random noise mn.
Then, the Radon model m can be expressed as

m ¼ mr þml þmn: (22)

To illustrate the distinguishable morphological features between
mr and ml, we generate synthetic data based on the seismic con-
volution model, as shown in Figure 3a. These synthetic data have
128 traces with a trace interval of 15 m and 512 time sampling
points with a sampling rate of 2 ms. A Ricker wavelet with a central
frequency of 30 Hz is used in simulating the reflections. Then, the
MRR noise is simulated by six linear events, as shown in Figure 3c.
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Through a linear superposition of Figure 3a and 3c, Figure 3e is
created, which can be regarded as synthetic seismic data contami-
nated by linear noise. After the high-resolution linear Radon trans-
form with the slowness range of ½0; 0.65� s∕km, mr, ml, and m are
obtained, as displayed in Figure 3b, 3d, and 3f, respectively. From
Figure 3b and 3d, we observe that mr and ml have completely dif-
ferent morphological characteristics, which satisfy the assumed
conditions of MCA separation. In addition, the red ellipse shown
in Figure 3f reveals that MRR noise often overlaps reflections in
the Radon panel even using the high-resolution linear Radon trans-
form, making it challenging to select the suitable mute regions in the
τ-p domain. In summary, it is feasible and necessary to suppress
MRR in the τ-p domain. Once we construct the proper augmented
dictionary, the attenuation of MRR can be achieved by solving

fxoptr ;xoptl g¼ argmin
fxr;xlg

km−Drxr−Dlxlk22þλðkxrk1þkxlk1Þ;

(23)

where xr and xl are the sparse representation coefficients of mr in
the overcomplete dictionary Dr andml in the overcomplete diction-
ary Dl, respectively.

Construction of two sparse representation dictionaries

The key to solving equation 23 is to determine
two appropriate sparse representation dictionaries.
The sparser the sparse representation coefficients,
the better the separation effect. As can be seen
from Figure 3b and 3d, the ideal MRRs are sharply
focused points in the Radon panel, whereas ideal
reflections are ellipses. Therefore, we need to
choose a dictionary to sparsely represent point fea-
tures and a dictionary to sparsely represent curved
features. To date, a significant number of signal
representations have been introduced to analyze
seismic signals, such as the Fourier transform,
wavelet transform, shearlet transform, etc. Accord-
ing to the τ-p morphological differences between
MRR and the reflected waves, this paper selects
the 2D-SWT as the sparse representation diction-
ary for MRR and the 2D shearlet transform as the
sparse representation dictionary for the reflected
waves in the Radon domain.

2D-SWT

Wavelet transforms, as isotropic objects, are
suitable for detecting objects with point singular-
ities, especially 2D-SWT, which is a nonsubsam-
pling form of the 2D discrete wavelet transform.
The 2D-SWT has been used in suppressing ac-
quisition footprint (Cvetkovic et al., 2007) and
ground roll (Wang et al., 2012) because it is de-
signed to improve the inadequacy of translation
invariance of the 2D discrete wavelet transform.
Moreover, 2D-SWT can suppress Gibbs phe-
nomena effectively. Therefore, 2D-SWT is se-
lected to be the dictionary for capturing the
abrupt point features.

The 2D-SWT is defined by a tensor production of a 1D-SWT
scaling function ϕðtÞ and wavelet function ψðtÞ:

ϕðx;yÞ¼ϕðxÞϕðyÞ; ψHðx;yÞ¼ϕðxÞψðyÞ;
ψVðx;yÞ¼ψðxÞϕðyÞ; ψDðx;yÞ¼ψðxÞψðyÞ; (24)

where ϕðx; yÞ is the scaling function. The ψHðx; yÞ, ψVðx; yÞ, and
ψDðx; yÞ are three oriented wavelets, denoting horizontal, vertical,
and diagonal direction, respectively. The wavelet basis function
here is the Symmlet wavelet with a vanishing moment of four.
Based on the à trous algorithm (Shensa, 1992), we obtain the wave-
let filter banks H and G to decompose a 2D signal fðx; yÞ:

Ajþ1½u;v� ¼
X
x

X
y

Hj½x−2u�Hj½y−2v�Aj½x;y�;

DH
jþ1½u;v� ¼

X
x

X
y

Hj½x−2u�Gj½y−2v�Aj½x;y�;

DV
jþ1½u;v� ¼

X
x

X
y

Gj½x−2u�Hj½y−2v�Aj½x;y�;

DD
jþ1½u;v� ¼

X
x

X
y

Gj½x−2u�Gj½y−2v�Aj½x;y�; (25)

Figure 3. Comparison of morphological differences between MRR and reflections in
the Radon panel. (a) Synthetic data containing three reflections, (b) high-resolution lin-
ear Radon transform in the time domain of (a), (c) synthetic linear MRR noise, (d) high-
resolution linear Radon transform in the time domain of (c), (e) synthetic data super-
posed with linear noise, and (f) high-resolution linear Radon transform in the time do-
main of (e). The ellipses indicate an overlap between MRR and reflections in the Radon
panel. To make the point features more pronounced, we choose a relatively larger λ in
equation 9. At the same time, the curved components are slightly unsmooth or not well
sampled due to the sparsity constraint. However, overall, they still have a curvilinear
morphology.
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where Aj is a set of approximation coefficients andDH
j ,D

V
j , andD

D
j

are sets of horizontal, vertical, and diagonal detail coefficients at
scale j, respectively. They are the same size as the original signal
fðx; yÞ. Here, Hj and Gj are the filter banks of the jth scale decom-
position, which can be generated by padding 2j − 1 zeros between
each coefficient of H and G, respectively. After MCA separation,
we can retrieve the signal with the coefficients by the inverse
2D-SWT:

Aj½x;y�

¼ 1

4

X3
i¼0

�X
u

X
v

~Hj½x−2u− i� ~Hj½y−2v− i�Ajþ1½u;v�

þ
X
u

X
v

~Hj½x−2u− i� ~Gj½y−2v− i�DH
jþ1½u;v�

þ
X
u

X
v

~Gj½x−2u− i� ~Hj½y−2v− i�DV
jþ1½u;v�

þ
X
u

X
v

~Gj½x−2u− i� ~Gj½y−2v− i�DD
jþ1½u;v�

�
; (26)

where ~H and ~G are synthesis filter banks. The atoms of 2D-SWTare
shown in Figure 4a, and they have three scales. Within each scale,
there are three directions: horizontal, vertical, and diagonal. The
atoms are multiscale and isotropic. Hence, the 2D-SWT has excel-
lent sparse representation ability for point singularity targets, and
we use it to extract the point features of MRRs in the Radon panel.

Shearlet transform

It is well known that the wavelet transform has limitations in cap-
turing the geometric regularity along a curve because its represen-
tation elements are generated based on isotropic dilation. They are
well localized but only distributed at various scales and locations.
The representation elements also must be distributed in various di-
rections to exploit the anisotropic regularity in multivariate func-
tions, such as edges in images. In this way, coefficients are
sparse because some atoms are nearly parallel to the edges. Several

sparse multidimensional representations have been proposed to
address this issue, including the directional wavelets, the curvelet
transform, the contourlet transform, etc. In particular, the shearlet
transform, which is first introduced by Labate et al. (2005), is a
novel multiscale geometric analysis tool. The shearlet transform
provides optimally sparse representations for 2D functions that
are smooth except for discontinuities along curves (Guo and Labate,
2007). According to our previous analysis, ideal reflections present
curved features in the Radon panel. Therefore, we select the shearlet
transform as the sparse representation dictionary for reflections.
Shearlets are obtained by dilating, shearing, and shifting the gen-

erating functions:n
ψ i;j;kðxÞ ¼ a

3
4ψðSjAix − kÞ∶i; j ∈ Z; k ∈ Z2

o
; (27)

where Ai is the parabolic scaling matrix Aa ¼
h a 0

0 a1∕2
i
ða > 0Þ

used to change the resolution, Sj is the shearing matrix

Sj ¼
h
1 j
0 1

i
used to change the orientation, k is the translation

parameter to change the positioning of the band-limited function
ψ , and x is the spatial location. The corresponding shearlet trans-
form is calculated by the inner product:

SHψfði; j; kÞ ¼ hf;ψ i;j;ki: (28)

Figure 4b shows the atoms of the shearlet transform, which ex-
hibits exactly geometric properties of multiscale, anisotropy, and
directionality. That is, the shearlet transform has the advantage that
it can capture curve singularity features. Hence, we use it to extract
the curved features of useful signals in the τ-p domain.

Sparsity analysis

Primary criteria for the successful MCA separation rely on proper
dictionaries. Each overcomplete dictionary should sparsely re-
present a corresponding signal component, but it cannot obtain
sparse results to other signal components. To further illustrate

the rationality of our chosen dictionaries, we ex-
amine the sparsity using the synthetic data shown
in Figure 3. The sparsity can be regarded as the
ratio of the number of nonzero elements to the
number of all elements in the coefficient matrix.
Obviously, the smaller the value, the smaller the
proportion of nonzero elements in the matrix and
the higher the sparsity. The corresponding spar-
sity measurements using 2D-SWT and the shear-
let transform are shown in Table 1. Compared
with the shearlet transform, 2D-SWT has higher
sparsity when it represents the pointwise singu-
larity component (linear noise). Meanwhile, the
shearlet transform has higher sparsity when it
represents the curved singularity component
(reflections). Therefore, 2D-SWT and the shear-
let transform are selected as the sparse represen-
tation dictionaries of MRR and reflections,
respectively, which meet the basic requirements
of MCA.

Figure 4. Comparison of 2D-SWT atoms and shearlet transform atoms. (a) The 2D-
SWT atoms. The 2D-SWT atoms are isotropic and can capture point features, and thus
are used to sparsely represent the MRR in the Radon panel. (b) Shearlet transform
atoms. Shearlet transform atoms are isotropic and can capture curved singularity fea-
tures, and thus are used to sparsely represent the reflections in the Radon panel.
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EXAMPLES

Synthetic data examples

First, the synthetic seismic data shown in Figure 3f are used to
verify the effectiveness of the proposed method. The f-k filtering
and Radon filtering techniques are commonly used methods in the
industry and are therefore used to suppress MRR noise as compar-
ative approaches. According to the separation strategy mentioned
previously, the Radon panel shown in Figure 5a shows the separated
pointwise components. It can be seen that the point features belong-
ing to MRR are well identified and separated. After the inverse Ra-
don transform, we obtain the reconstructed MRR, as shown in
Figure 6a. Finally, we subtract the separated MRR from the original
data to obtain the denoised reflections, as shown in Figure 6b. The
linear noises removed by the f-k filtering and Radon filtering meth-
ods are shown in Figure 6c and 6e, respectively. We see that the
linear noise is completely removed, but there is noticeable signal
leakage. Similarly, the filtered MRR is subtracted from the original
data to obtain the denoised results, as shown in Figure 6d and 6f,
respectively. Through an in-depth investigation of the preceding fig-
ures, it can be found that most of the linear noise can be suppressed.
However, compared to Figure 6b, it can be observed that, at the far
offset of the second reflection event, especially the part indicated by
the red arrows, the denoised results obtained with the f-k filtering
and Radon filtering methods obviously damage the effective reflec-
tion waves. Moreover, there is still obvious noise residue after the
f-k filtering. In contrast, the denoising results obtained by the pro-
posed method have done almost no damage to the reflection events,
thus exhibiting good fidelity.
To further analyze the fidelity to the effective signal amplitude of

the proposed method, the 34th trace data of the synthetic data are
extracted, as shown in Figure 7. A comparison of Figure 7a and 7b
reveals that the effective signal waveform is submerged in the linear
interference, which is difficult to identify. Comparing the results of
the proposed method shown in Figure 7c, the f-k filtering method
shown in Figure 7d, and the Radon filtering method shown in Fig-
ure 7e, it can be concluded that the three methods can suppress most
of the linear noise, but they cause different levels
of damage to useful signals. The f-k filtering and
Radon filtering seriously damage the waveform
of the second reflected wave, as marked by the
red box. Moreover, the Radon filtering method
also distorts the waveform of the first arrivals,
as shown in the green box in Figure 7e. In con-
trast, when using the proposed method, the am-
plitude of the effective wave is well preserved,
particularly in the red box region, and the wave-
form has no significant distortion. A closer in-
spection shows that the apparent velocity of
the damaged part of the reflection events is sim-
ilar to that of linear noise. In other words, they
are overlapping in the f-k domain and are vulner-
able with the f-k filtering method. In the same
way, although MRRs are focused on points
and are more easily located after the high-reso-
lution linear Radon transform, aliasing of point
features and curved features still appears. Turn-
ing now to the experimental evidence in the red
ellipse area shown in Figure 3f, we see that the

slowness and time intercept of the reflections are close to that of the
linear noise. In this way, a direct mute in the Radon domain may
damage the energy of the effective signal. However, the proposed
method can effectively separate the point and curved components
according to their morphological differences, thereby avoiding
damage to the reflection events. Moreover, the noise suppression
ability of the proposed method is superior to the other two methods.
To perform a quantitative analysis of the denoising results of the

three methods, we calculate the S/N as the well-known formulation:

S∕Nðmr; m̂rÞ ¼ 10 log10
kmrk22

km̂r −mk22
; (29)

where mr represents the clean reflections and m̂r represents the
denoised results. As can be seen from Table 2, all three methods
effectively improve the S/N compared with the original noisy data.
Furthermore, the S/N of the proposed method is significantly higher
than the other two methods, which proves the effectiveness of our
method in suppressing linear interference. Overall, these results in-
dicate that the proposed method effectively suppresses most of the
MRR noise and preserves the energy of the effective signal well,
which is beneficial for subsequent analysis and processing.
To make the synthetic data more realistic, we create new syn-

thetic data based on wave equation forward modeling, as shown
in Figure 8. The synthetic data mainly contain three effective reflec-
tions as indicated by the white arrows and three linear noise events
as indicated by the red arrows. In addition, some multiples also

Table 1. Sparsity measurements of synthetic data using
2D-SWT and shearlet transform.

Reflections MRR noise

2D-SWT 0.1423 0.0801

Shearlet transform 0.0639 0.1987

Figure 5. MCA separation results. (a) Separated pointwise component and (b) separated
curved component.
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occur. Furthermore, we introduce band-limited random noise with a
frequency range of 10–60 Hz. The noise standard deviation is
97.50. The geologic model for generating the synthetic data is a
two-layer model with different velocities and is displayed in Fig-
ure 9. The low-velocity layer has a velocity of 800 m/s, and the
high-velocity layer is 2500 m/s. The density of the two layers is
calculated with Gardner’s relation. To simplify the example, the
seismic quality factor is set to infinity. In addition, we suppose that
the surface of the ground is a free surface, and we set the central
frequency of the Ricker wavelet to 30 Hz and the maximum offset to
2000 m. The synthetic data have 401 traces, and the trace interval is
10 m. The boundary between the layers is at a depth of 80 m, and
the thickness of the high-velocity layer is 300 m. Then, a source is
placed at a depth of 0 m and the midpoint in the horizontal direction.
The number of sampling points is 1001 with a sampling interval of
1 ms, so the total seismic recording length is 1 s.
Next, we perform a high-resolution linear Radon transformation

on the synthetic data with a slowness range of ½0; 0.6� s∕km. As
shown in Figure 10a, the point-like information in the red ellipse
area is the main energy corresponding to the linear interference,
and the other curve-like information contains the main energy of
the reflected waves. It is clear that their distributions are overlap-
ping. Therefore, a direct mute in the Radon domain is likely to cause
the loss of effective wave energy, negatively affecting subsequent
processing. To better suppress MRR noise, the proposed method
is applied to Figure 10a and the separated results of the point-like

energy and curve-like energy are presented in Figure 10b and 10c,
respectively. Following the proposed procedure shown in Figure 2,
the linear noise can be reconstructed from the separated point com-
ponent using the inverse Radon transform, as shown in Figure 11a.
It is evident that there are no significant structures of desired reflec-
tion signals. That is, the proposed method hardly hurts the useful
signals. Figure 11a shows the results after subtraction. In compari-
son with the original data, the proposed method has suppressed
most of the linear noise. For comparison, the f-k filtering and Ra-
don filtering methods also are applied to suppress the MRR noise,
and the removed noise is displayed in Figure 11c and 11e, respec-
tively. Although the latter two methods also can attenuate linear
noise, they cause more damage. The f-k filtering introduces ob-
vious artifacts, as shown in the red ellipse area in Figure 11d. More-
over, when the reflected wave is close to the apparent velocity of the
linear noise at the far offset, it causes some loss of reflected wave
energy. A detailed analysis of the areas indicated by red arrows in
Figure 11b and 11d proves this. Similarly, the slowness of MRR
noise and the effective reflections are close at far offsets, which
leads to an overlap in the Radon panel. From the areas indicated
by the white arrows in Figure 11f, we observe that a direct mute
results in the loss of effective wave energy. In addition, as indicated
by the red arrows, some residual MRR noise remains, whereas our
approach can significantly reduce it. In conclusion, compared with
the traditional f-k filtering method and Radon filtering method, the
proposed method has higher fidelity for the effective signal and is

more effective in suppressing strong linear noise.

Field data example

Figure 12a shows a 2D common-shot gather
acquired in Eastern China. This land seismic rec-
ord has a total of 255 traces with a sampling in-
terval of 20 m. Each trace has 3501 time
sampling points, and the sampling interval is
1 ms. Obviously, MRR noise, marked by the
red ellipses, severely masks the shallow primary
reflection events and negatively impacts sub-
sequent interpretation. Moreover, the direct wave
marked by the blue line and ground roll marked
by the yellow cone also interfere with the reflec-
tions. Figure 12b displays the Radon panel of this
seismic record using a slowness range of
½−0.5; 2.5� s∕km. The reflections of interest
marked by the black box are overlapped by
the MRR in the red ellipse area, which makes
the direct mute invalid. The challenge also comes
from the ground roll, which is mainly concen-
trated in the yellow ellipse area because it has
a morphological feature similar to MRR in the
Radon panel and may hinder the successful
MCA suppression. For a better removal of
MRR, we set the appropriate slowness range
of ½0.25; 2� s∕km to avoid obstacles from ground
roll, as displayed in Figure 13a. From our sepa-
rated results shown in Figure 13b and 13c, we
find that the significant different features are well
separated, which proves the reasonability of our
selected dictionaries.

Figure 6. Comparison of the signal-to-noise separation results with the synthetic shot
gather. (a) Removed MRR by the proposed method, (b) separated reflections by the
proposed method, (c) removed MRR by the f-k filtering method, (d) separated reflec-
tions by the f-k filtering method, (e) removed MRR by the Radon filtering method, and
(f) separated reflections by the Radon filtering method. The red arrows show that the f-k
filtering and Radon filtering methods damage the reflections, whereas our method pre-
serves the reflections well.
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Following this, the inverse Radon transform is applied to obtain
Figure 14a and the MRR noise is separated by subtraction in
Figure 14b. By comparing the results with raw data, it can be found
that the linear noise is effectively attenuated by the proposed
method, and the reflection events which were significantly covered
by the linear noise are clearly displayed at present. Further, f-k fil-
tering and Radon filtering are applied to the common-shot gather for
comparison. Figure 14c and 14d shows the separated MRR noise
and reflections using the f-k filtering, respectively. Figure 14e and
14f displays the corresponding results of the Radon filtering
method. Comparing Figure 14b, 14d, and 14f, it can be concluded
that the proposed method and the two comparison methods can sup-
press most of the MRR noise, and the most effective events covered
by the strong MRR have been recovered. However, our method per-
forms better than the other two methods because our denoised re-
flection events are clearer and more continuous, especially in the
shallow layer. This also can be seen inside the red boxes within
the time range from 0.5 to 2.2 s, where almost no MRR noise

residuals are observed. For the f-k filtering method, MRR residuals
at far offset are obvious, as marked by the yellow arrows in
Figure 14d. In addition, it produces severe waveform distortions

Figure 7. Comparison of the signal-to-noise separation results with
the 34th trace in the synthetic shot gather. (a) Synthetic data con-
taining three reflections and (b) synthetic data superimposed with
linear noise. Separated reflections by (c) the proposed method,
(d) the f-k filtering method, and (e) the Radon filtering method.
The red boxes reveal that the proposed method has high fidelity.
The green box indicates that the Radon filtering distorts the wave-
form of the first arrival.

Figure 8. Synthetic data based on wave equation forward model-
ing. The red arrows indicate the MRRs, and the white arrows in-
dicate the reflections.

Figure 9. A model used for forward modeling, which has two
layers with different velocities.

Table 2. S/N comparison of the three methods.

S/N (dB)

Original noisy data −3.08
The proposed method 12.73

f-k filtering method 5.07

Radon filtering method 6.02
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at the shallow near-offset and the far-offset zone, as indicated by the
red ellipse in Figure 14d and the red arrows in Figure 14c, respec-
tively. For the Radon filtering method, obvious MRR residuals can
be found near the yellow arrows and in the area indicated by the red
ellipse in Figure 14f. Furthermore, we also plot the f-k spectrum to
evaluate the proposed method. Figure 15a displays the spectrum of
the original data, and it can be seen that the energy of MRR noise is
mainly located in the black ellipse region. In addition, spatial alias-
ing at high frequencies is observed in the yellow
ellipse. The MRR removal results of our method,
the f-k filtering method, and the Radon filtering
method are shown in Figure 15c, 15e, and 15g,
respectively. It can be seen that the three methods
can effectively attenuate the MRR interference
because the corresponding black region is re-
moved. We notice that the cutoff region of the
f-k filtering is carefully chosen to achieve a com-
promise between MRR suppression and reflec-
tion preservation. In addition, the cutoff edge
is smoothed to avoid introducing oscillations.
Even if the filter is carefully designed, there
are still obvious truncations around the red ar-
rows shown in Figure 15e, which is the cause
of the artifacts shown in Figure 14d. From the
red arrows in Figure 15c and 15e, it can be ob-
served that the denoised results of the f-k filter-
ing are inferior to those of our method because
our spectrum of denoised results is more continu-
ous. The spectra of separated MRR noise and
denoised reflections by the Radon filtering
method are shown in Figure 15f and 15g, respec-
tively. The obvious energy of the MRR interfer-
ence still remains, as marked by the red arrows in
Figure 15g. This phenomenon is consistent with
the problem of incomplete MRR suppression
shown in Figure 14f. In addition, it is worth men-
tioning that only our method eliminates spatial
aliasing, which is a significant advantage over
the other two methods. In summary, the proposed
method outperforms the traditional f-k filtering
and Radon filtering methods because our method
has higher fidelity to effective signals and can
suppress more MRR noise.

DISCUSSION

Different from a direct application of MCA in the temporal-space
domain (Wang et al., 2012; Chen et al., 2017), we use MCA to
separate the MRR noise in the linear Radon domain that magnifies
the difference between the signals and noise, allowing them to
be separated more easily. It also is possible to attenuate other co-
herent noise in a similar manner by using other transformations.

Figure 11. Comparison of the signal-to-noise separation results with the synthetic shot
gather generated by the forward modeling. (a) Removed MRR by the proposed method,
(b) separated reflections by the proposed method, (c) removed MRR by the f-k filtering
method, and (d) separated reflections by the f-k filtering method. The red ellipses in-
dicate that the f-k filtering introduces obvious artifacts. From the areas indicated by the
red arrows in (b and d), we observe that the f-k filtering method also causes some loss of
reflected wave energy. (e) Removed MRR by the Radon filtering method. (f) Separated
reflections by the Radon filtering method. The white arrows show that the Radon filter-
ing method results in the loss of effective wave energy. According to the red arrows,
there is some residual MRR noise, which is effectively removed by our method.

Figure 10. Separation results in the Radon panel.
(a) Original data contaminated with linear noise.
The red ellipse indicates the distribution of linear
noise in the Radon panel. (b) Separated point-like
information by our method. (c) Separated curve-
like information by our method.
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A comparable technique is proposed by Perkins and Zwaan (2000),
which aims to attenuate ground roll. They first construct the signal
space As and the ground-roll space Ag. Then, they solve the follow-
ing equation in a least-squares sense:

min
ws;wg

kd − Asws − Agwgk; (30)

where ws and wg are vectors comprising coefficients representing
the signal and the ground roll, respectively. Similarly, our proposed
method can be rewritten in the following form:

min
fxr;xlg

kd − LDrxr − LDlxlk22 þ λðkxrk1 þ kxlk1Þ

s:t: Drxr þ Dlxl ¼ m; kmk1 ≤ δ;
(31)

where δ > 0 denotes a parameter that governs the sparsity of the
solution. If we regard LDr as the reflection space Ar and regard
LDl as the MRR space Al, we find that equation 31 has the same

Figure 12. A raw common-shot gather of field seismic data.
(a) Original field seismic data and (b) the high-resolution linear Ra-
don transform. The red, yellow, black, and blue colors represent the
MRR noise, ground roll, effective reflections, and direct waves, re-
spectively.

Figure 14. Comparison of the signal-to-noise
separation results with the field shot gather. (a) Re-
moved MRR by the proposed method, (b) sepa-
rated reflections by the proposed method, and
(c) removed MRR by the f-k filtering method.
The red arrows indicate severe waveform distor-
tions. (d) Separated reflections by the f-k filtering
method. The red ellipse indicates severe waveform
distortions, and the yellow arrows show significant
MRR noise residuals. (e) Removed MRR by the
Radon filtering method. (f) Separated reflections
by the Radon filtering method. The red ellipse
and four yellow arrows indicate obvious MRR re-
siduals. By comparing the areas indicated by red
boxes in (b, d, and f), we observe that the proposed
method gives the best results because the denoised
reflection events are the clearest and most continu-
ous.

Figure 13. MCA separation results in the Radon
panel. (a) The Radon panel of the original field
seismic data using a suitable slowness range,
(b) the separated linear noise, and (c) the separated
reflections of interest.
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form as equation 30 except for the additional regularization
terms. Indeed, we concatenated two different transforms to pro-
duce two relatively complex spaces, making the signals and noise
easily distinguishable. Equation 30 was successfully imple-
mented to suppress ground roll. Accordingly, we are confident
that our proposed method can be applied to attenuate linear
ground roll with a few modifications. In addition, we notice that
the 3D Radon transform has recently attracted the attention of the
industry (Perrone et al., 2019). We will apply the proposed algo-
rithm to 3D linear noise suppression, such as cross-spread 3D
prestack field data. In this case, 3D multiscale transforms will
be required, and the amount of calculations involved might pose
a challenge.

CONCLUSION

We propose an MRR attenuation method
based on the differences of waveform morpho-
logical features in the τ-p domain. Using the
high-resolution linear Radon transform, the
MRR noise and effective reflections can be trans-
formed into point features and curved features,
respectively. Then, they can be separated by
MCA theory with appropriate overcomplete dic-
tionaries. The 2D-SWT is suitable for analyzing
signals with discontinuities or sharp spikes,
thereby serving as a dictionary to extract point
components. The shearlet transform, as a multi-
scale and multidirectional transformation, is
adopted as a dictionary to extract curved compo-
nents. Finally, after completing iterations of the
block coordinate relaxation method, we apply the
inverse Radon transform to the separated MRRs
and subtract them from the original seismic data.
Subtraction produces amplitude-preserved re-
sults. Synthetic data and field data demonstrate
that our method preserves reflections better than
the f-k filtering method and the Radon filtering
method, without introducing artifacts. Future re-
search will involve extending the proposed
method to higher dimensions and attenuating
other types of linear noise, such as linear ground
roll.
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Radon filtering method. By comparing the red arrows in (c and e), we observe that our
spectrum is more natural and continuous. The red arrows in (g) indicate that some MRR
noise still remains after applying the Radon filtering method. The yellow ellipses mark
the spatial ellipse.
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