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ABSTRACT

Recent years have witnessed many practical applications of su-
pervised deep learning in seismic processing. However, a weak
generalization behavior prevents widespread implementation on
large-scale prestack data sets for coherent noise attenuation. This
is particularly true when addressing strong near-surface scattered
noise in land seismic data. To alleviate this problem, we have
combined deep learning with an offset-vector tile (OVT) parti-
tioning method to suppress strong scattered noise. With the OVT
partitioning method, seismic data are spatially uniformly sampled,
offering a favorable foundation for network learning. Specifically,
the reflection probability distribution is more stationary than
the noise distribution, making it easier for the network to learn

the reflections. Accordingly, we use the direct signal learning strat-
egy rather than the commonly used residual learning strategy to
train the network. To construct high-quality training labels, we
adopt the 3D continuous wavelet transform (3D CWT), which
can exploit the 3D spatial correlation in OVT gathers. General
use of these labels can produce results similar to 3D CWT but
is highly efficient. To further improve denoising performance,
we propose a training sample construction approach that leverages
middle-offset OVT volumes with varying azimuths in light of
midoffset relatively high signal-to-noise ratio characteristics.
The field data experiment demonstrates that our proposed method
also has an excellent generalization ability. Despite only using six
middle-offset gathers for training, the trained network is able to
effectively process 1260 OVTs in a timely manner.

INTRODUCTION

Suppressing coherent noise, which often coexists with random
noise, remains a technical issue in seismic data processing, particu-
larly in prestack seismic data. In particular, the suppression of
scattered noise is one of the most challenging tasks (Vermeer,
2008; Han et al., 2016; Miorali et al., 2018). Due to near-surface
heterogeneities and discontinuities, as well as topography irregular-
ities, surface waves are diffracted, resulting in secondary events,
which can seriously interfere with seismic records. Note that the
preceding scattering is not random: it is complex but coherent
and deterministically reproducible (Strobbia et al., 2014). Many

prestack attributes rely heavily on high-quality prestack data, so
scattered noise attenuation is crucial to seismic data processing.
The noise attenuation method has been described in numerous

published studies. These denoising methods rely on prior knowledge
of the physical representation of the signal or coherent noise and can
be roughly divided into three groups. First, the filtering based upon
the predictable property of the seismic signal is a general approach,
such as f-x deconvolution (Gulunay, 1986) and t-x prediction filtering
(Abma and Claerbout, 1995). However, large-amplitude prestack
noise distorts reflection continuity, hence decreasing the denoising
capability. Second, two fundamental approaches based on the low-
rank prior are currently being adopted. One is low-rank factorization
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(Trickett, 2003; Bekara and Van der Baan, 2007; Oropeza and Sacchi,
2011; Gao et al., 2015) and the other is nuclear norm minimization
(Gu et al., 2014; Li et al., 2017). Typically, most of them obtain suc-
cessful denoising results by assuming linear events, and the denoising
results can be further improved with more flattened reflections. Third,
sparse priors are widely imposed on denoising methods, requiring
that the reflected or noise coefficients within the transformed image
be sparse. However, the energy of the prestack noise is nonuniform,
which seriously distorts the reflections in some areas. This under-
mines the validity of this sparse assumption, thereby weakening
the denoising ability. In summary, prestack data have richer informa-
tion than poststack data, making it possible to achieve good denoising
results in theory. However, conventional methods have difficulty in
fully exploiting such information in practice due to the preceding rea-
sons. Therefore, selecting a suitable seismic data domain is essential
for achieving more effective denoising methods.
In recent years, seismic exploration targets have gradually turned

to complex structures, complex strata, and lithologic trap reservoirs
(Yin et al., 2018). These exploration targets have high requirements
for seismic processing accuracy. The wide-azimuth seismic acquis-
ition can obtain massive high-quality seismic data and is commonly
used to improve the imaging accuracy of seismic data in complex
areas. As a core wide-azimuth seismic data processing technology,
offset-vector tile (OVT) processing technology has been proposed by
Vermeer (1998). Each OVT gather is composed of multiple common-
midpoint traces with a limited range of offsets and azimuths, thus
having a good energy consistency. In addition, OVT can enhance
the spatial continuity of the prestack wavefield, which is favorable
to noise attenuation. As a result, noise attenuation in the OVT domain
has captured considerable attention. Li et al. (2015) improve the sig-
nal-to-noise ratio (S/N) of OVT-domain seismic data with the volume
τ-p transform. Vinje et al. (2015) propose an approach based on the
OVT gathers to reduce acquisition footprint artifacts caused by
irregular subsurface illumination. Duan et al. (2016) reveal that the
footprint can be effectively suppressed from the source by integrating
5D interpolation and migration in the OVT domain. Ling and Hu
(2019) propose an internal multiple attenuation method after binning
data into the OVT domain and demonstrate that such OVT gathers are
appropriate for this task. Sun et al. (2019) apply a 2D curvelet trans-
form to denoise weak signals in the OVT domain. To improve
conventional denoising approaches, Li et al. (2019) use a unified
learning-based framework to extract residual weak signals from
strong noise after sorting data into the OVT domain. In conclusion,
the OVT technique delivers an effective and accurate data domain for
performing seismic processing. Although the OVT technique has the
potential to improve prestack denoising performance, it also faces
two main issues. First, each OVT gather can be regarded as low-
fold-coverage seismic data. Therefore, the S/N of OVT gathers is usu-
ally relatively low, thus requiring a more refined denoising process.
Second, containing 3D spatial coordinates as well as rich azimuth and
offset information, OVT gathers have a vast amount of data, which
further put forward higher requirements for the processing speed of
the denoising algorithm. Therefore, it is vital to propose a robust and
efficient denoising algorithm for OVT gathers.
Recent years have seen considerable advancements in deep learn-

ing techniques, particularly in the field of image processing. To
date, numerous deep learning algorithms have been applied to seis-
mic signal processing and have yielded good results (Yu and Ma,
2021). Deep learning methods are mainly composed of supervised

methods and unsupervised methods. Unsupervised methods elimi-
nate the necessity for massive and laborsome labels, and thus attract
considerable attention (Saad and Chen, 2021). For instance, Pham
and Li (2022) train a frequency threshold classifier in a supervised
manner to assist in the unsupervised separation of coherent ground
roll. Nevertheless, strong scattered noise has a considerable fre-
quency overlap with useful signals, making it challenging to add a
frequency constraint for strong scattered noise attenuation. Although
some other unsupervised deep learning methods have shown promise
in weak scattered noise areas (Liu et al., 2020a), they need to opti-
mize the network for each input gather and cannot use the well-
trained network to test other data directly. In addition, another tricky
aspect of unsupervised learning is the parameter selection. Therefore,
our paper focuses on supervised deep learning because it is computa-
tionally efficient and well established.
The denoising convolutional neural network (DnCNN) (Zhang

et al., 2017), U-net (Ronneberger et al., 2015), and generative ad-
versarial network (Goodfellow et al., 2014; Kaur et al., 2019, 2020)
are the most commonly used network architectures. Among them,
due to the straightforward network architecture and effective
residual learning strategy, DnCNN has received the most attention
and has been used to attenuate random noise (Zhang et al., 2018),
multiples (Yu et al., 2019), ground roll (Li et al., 2018), desert noise
(Zhao et al., 2019), linear noise (Zheng et al., 2020), and blended
noise (Matharu et al., 2020). Although DnCNN has succeeded in
suppressing prestack coherent noise, there are still many remaining
challenges compared with poststack noise, limiting its widespread
application in practice. In general, the successful prediction of deep
learning is dependent on the essential assumption that test and train-
ing data sets originate from the same distribution. Due to the sim-
ilarity of the underlying structure, poststack data from the same
work area have relatively similar data distribution characteristics,
thus roughly satisfying this assumption. Moreover, owing to the
strong noise suppression ability of the stacking, data usually possess
a high S/N, low-noise energy, and weak amplitude variation, which
provides a good data basis for network training. Therefore, applying
DnCNN to poststack data does not present a significant challenge.
In contrast, prestack noise has varying signatures, which are quite
distinct from each other. Moreover, many types of noise have strong
amplitudes and are unevenly distributed, causing trouble when di-
viding the training data into patches. Another key factor contribut-
ing to the unstable network training is the severe amplitude decay
and considerable waveform changes of reflections. Taking near-sur-
face scattering noise in land acquisition as an example, it often has
high amplitudes and exhibits complex diffraction patterns associ-
ated with the spatial positions of point scatters, obscuring prime
reflections in t-x and f-k domains. Known as one of the most
troublesome forms of coherent noise, it presents a severe challenge
to the conventional attenuation strategies performed in the common-
shot and common-receiver domains. Not surprisingly, supervised
deep learning methods, such as DnCNN, have failed to make a
breakthrough in it. On the one hand, there is a lack of high-quality
training samples for network training. On the other hand, DnCNN
has difficulties in capturing the desired features because the noise
amplitude at near, middle, and far offsets is nonuniform. As a result,
the well-trained DnCNN has a limited generalization. Unlike post-
stack data, even within the same work area, the network struggles to
provide satisfactory denoising results for all data. Therefore, it is
essential for prestack coherent noise attenuation that the network
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is trained on the appropriate domain where it can easily learn the
features in an accurate manner.
We present a novel method for attenuating prestack scattered noise

by integrating deep learning and the OVT partitioning technique.
This integration can make full use of the advantages of both sides.
From the OVTaspect, deep learning is well suited for high computa-
tional efficiency thanks to access to parallel computing. Benefiting
from the rapid development of graphics processing unit (GPU) tech-
nology, deep learning can substantially reduce the processing time of
OVT gathers to an acceptable level. As a result, deep learning makes
it no longer challenging to process large-scale OVT gathers in prac-
tice, so that OVT techniques more appliable for wide-azimuth explo-
ration. From the network aspect, seismic data in the OVT domain
have a smooth and continuous wavefield. Moreover, each OVT
gather is single-fold coverage of the whole acquisition area, and it
samples the complete 3D subsurface. Therefore, the spatial and tem-
poral amplitude variation in the OVT domain is reduced and uniform
regardless of near-, middle-, and far-offset volumes. Thus, these mer-
its of OVT data provide an ideal data foundation to train the network
and further improve the network generalization ability. Similar to 3D-
DnCNN (Liu et al., 2020b) which was applied to poststack data, we
adopt a 3D network to exploit the 3D spatial correlation of the OVT
volumes. On this basis, we have made somemodifications so that it is
more suitable for our task. In particular, removing the residual learn-
ing strategy in 3D-DnCNN is superior for strong noise attenuation, as
demonstrated by the synthetic data. To construct high-quality training
samples and fully exploit the dip information provided by the field
seismic data, we adopt a 3D continuous wavelet (3D CWT) to sup-
press scattered noise in the OVT volumes. By randomly selecting
OVT volumes with varying azimuths inside the middle-offset ranges,
we are able to further increase the denoising performance in effi-
ciency and quality compared with 3D CWT. To demonstrate this,
the well-trained network is tested on an actual seismic data set from
Western China. It takes roughly 6 min to effectively denoise an OVT
gather with a size of 200 × 200 × 3001, which is approximately one-
tenth of 3D CWT.

METHOD

OVT partitioning technique and data
preprocessing

Complex geologic exploration targets require
high seismic exploration accuracy. Limited by
the nonuniformity of the near-, medium-, and
far-offset amplitude and the difficulty of actual
azimuth anisotropy processing, narrow-azimuth
seismic processing technology has difficulties
in further improving seismic reservoir prediction
accuracy. Wide-azimuth processing technology
effectively solves these problems, thus becoming
one of the mainstream directions of seismic ex-
ploration technology development at this stage.
OVT is one of the most widely used wide-azi-

muth processing technologies in the industry. At
present, OVT gathers mainly come from orthogo-
nal observation systems. Sorting seismic data into
OVT gathers data is realized in the cross-spread
domain. The OVT size is decided first, and then
OVT gathers are extracted. As shown in Figure 1a,

a cross spread is a collection of traces that share a common source
line and a common receiver line. Then, the midpoint area of the cross
spread can be divided into many tiles, as shown in the yellow square.
The size of each tile is decided by the receiver line interval and source
line interval, usually twice these intervals. Theoretically, for the 3D
orthogonal observation system, this partitioning rule can make each
tile have only one coverage at each common midpoint, obtaining the
best data regularity. Each tile comprises several common midpoints
within a limited source and receiver range, thereby comprising par-
ticular azimuth and offset information. Then, an OVT gather can be
obtained by patching together all of the tiles with the same offset
ranges in different cross spreads, as depicted in Figure 1b. The trace
assignment using in the traditional common-offset domain is nonuni-
form. Therefore, aliased noise is prevalent, especially in the inline
direction, due to insufficient spatial sampling. On the contrary, the
OVT partitioning method can produce uniformly sampled data
and show good data consistency.
Although the adjacent traces in the OVT gathers have a reason-

able correlation, many empty traces need to be interpolated. To pre-
pare the final output of OVT gathers, we perform a 5D seismic data
reconstruction based on the antileakage Fourier transform (Xu et al.,
2010). In addition, normal moveout, static correction, and abnormal
energy suppression also are applied to improve seismic data quality.
It is worth mentioning that we do not attenuate noise during data
preprocessing because denoising is our primary objective.

Training sample construction

To achieve good results with supervised deep learning, the most
challenging aspect is to have high-quality training samples. Having
ground-truth reflections is a significant advantage when training
networks with synthetic data. However, it is an overwhelming task
to simulate realistic scattered noise. Therefore, even though this
training sample construction technique can achieve good results
when applied to a small-scale test, the practical application of this
method at a large scale is not very reliable. Due to this, we choose
the second method, which is creating training labels with a tradi-
tional method.

Source line

Receiver
line

Source line
interval

Receiver line
interval

Offset distribution 
within one OVT

Tile [2,2]

Offset Y

Offset X
A limited range 

of offset X

A
 l

im
it

ed
 r

an
g

e 
o

f 
o
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t 
Y

Sourrcece line

Receiver
line

CMP

Line

CMP

Linen

Patching
together

OVT gather with tiles [2,2]
from all cross spreads

cross spreads

a) b)

Figure 1. OVT gathers can be formed based on the cross-spread geometry. (a) A cross
spread is a collection of traces that share a common source line and a common receiver
line. Traces from a specified range of offset X and offset Y are grouped into an OVT.
(b) Patching together all of the tiles that have the same two offset ranges from different
cross spreads produces an OVT gather, which is a single-fold data set with similar offsets
and azimuths that covers the whole survey region. CMP: common midpoint.
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Sparsity is a widely used regularization for denoising seismic
data. With sparse constraints, we can denoise the noisy data in
some specific sparse domain based on the spatial continuity of
the signal. Previous methods based on sparse representation fail
to estimate good results when dealing with scattered noise due
to the absence of a suitable sparse domain for representing useful
signals. For example, in the shot domain, the spatial amplitude
variation of the noise is evident, and the sparsity of effective sig-
nals is thus affected, resulting in poor denoising results. However,
OVT gathers exhibit good spatial consistency and therefore pro-
vide an ideal domain for denoising. We use continuous wavelet
transform (CWT) to denoise OVT gathers based on sparse regu-
larization. To fully exploit the 3D spatial continuity of OVT
volumes, 3D CWT (Wang et al., 2010; Zhao et al., 2021) is used
to obtain clean data, and the definition is

ðWψfÞða; b; θ;φÞ

¼ hf;ψa;b;θ;φi ¼
1

a3

Z
R3

fðuÞψ�
�
1

a
r−θ;−φðu − bÞ

�
d3u;

(1)

where fðuÞ is the input 3D OVT gather. Here, a > 0, b, and
ðθ;φÞ ∈ ½0;2πÞ represent the scale factor, translation operation,
and rotation parameter, respectively, used to generate a series
of wavelets:

ψa;b;θ;φ ¼ 1

a3
ψ

�
1

a
r−θ;−φðu − bÞ

�
; u; b ∈ R3: (2)

For our applications, we select the high-dimensional Morlet wave-
let (Morlet et al., 1982; Grossmann and Morlet, 1984; Farge,
1992) as the mother wavelet ψðuÞ because it is a directional wave-
let, and its formulation is similar to a Gabor transform, which is
easy to implement. The high redundancy of CWT allows for
greater denoising flexibility. After decomposing the OVT gathers
into a 6D coefficient domain, we can filter the unwanted coeffi-
cient corresponding to the noise component with the hard thresh-
old function. After inverse 3D CWT, we can obtain satisfactory
results, which can be seen as labels. Even though these results
are impressive, 3D CWT requires a substantial amount of compu-
tational time. Herein lies the motivation for our use of deep
learning.
Furthermore, it is essential to consider how to choose more ap-

propriate OVT gathers when constructing training samples because
they have different azimuths and offsets. At the near offset, the
amount of noise energy is too high, primarily due to the existence
of coherent ground roll. At the far offset, the recording time for
signals is short, and the wavefield is more complex. In addition,
it is susceptible to interference from coherent noise, such as multiple
refraction. Therefore, the near and far offsets are not suitable for
training. In the middle-offset range, there are typically more traces
than in the near-offset range and in the far-offset range, so it usually
has a higher S/N, which is conducive to a better denoising result
using conventional methods. Therefore, middle-offset gathers are
selected to train the network. In addition, OVT gathers can conven-
iently provide azimuthal anisotropy. We use a randomization oper-
ator to select different azimuth gathers from middle-offset OVT
gathers to use this azimuth information fully. It is inspired by the
fact that simple random sampling is an unbiased approach to garner

the responses from a large set, making it easier for the network to
learn the correct distribution of the signal.

Model formulation and network architecture

Network architecture can be viewed as an implicit regularization.
Choosing the appropriate network architecture can make use of
the preceding high-quality training samples more efficient. We
model the seismic data, denoted by a vector y ∈ Y ¼ Rm, as a
superposition of reflections and noise:

y ¼ xþ n; (3)

where x ∈ X ⊂ Rm represents useful signals and n represents
scattered and random noise. Under supervised deep learning,
the denoising problems are viewed as regression problems.
The network training process is to develop a mapping between
noisy seismic data and clean reflections or noise with a large
number of training sample pairs containing noisy data and clean
labels,

ðyi; xiÞ ∼ ðY; XÞ ¼ ðX þ N;XÞ; i ¼ 1; : : : ; K; (4)

or containing noisy data and noise,

ðyi; niÞ ∼ ðY;NÞ ¼ ðX þ N;NÞ; i ¼ 1; : : : ; K; (5)

where the clean labels and noise are separated by the conventional
method. Here, Y; X, and N are random variables taking values in
Y, X , and N , respectively, and K is the total number of training
samples. Through network training, deep learning attempts to find
the regression function based on learning reflections,

h� ¼ argmin
h

EX;NfLðhðX þ NÞ; XÞg; (6)

or learning noise,

h� ¼ argmin
h

EX;NfLðhðX þ NÞ; NÞg; (7)

which is an expected risk minimization task. The loss function L
we choose is a pixel-wise mean square error, which is the most
commonly used one. Then, equation 6 can be expressed as direct
signal learning,

LðhðX þ NÞ; XÞ ¼ khðX þ NÞ − Xk22; (8)

and equation 7 can be expressed as residual learning,

LðhðX þ NÞ; XÞ ¼ khðX þ NÞ − Nk22: (9)

However, either equation 8 or equation 9 is usually intractable due
to the fact that the joint distribution function PðY; XÞ is unknown.
Therefore, the empirical risk is used to estimate the expectation,
which is derived from the sample mean over the training data set.
The empirical risk minimization task is achieved by optimizing
over the convolutional neural network (CNN) parameterized map-
pings fθ∶Y → X or fθ∶Y → N with parameters θ. As a result, the
network training process equates to determining the optimal
parameters
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θ� ¼ argmin
θ

XN
i¼1

kfθðyiÞ − xik22 (10)

or

θ� ¼ argmin
θ

XN
i¼1

kfθðyiÞ − ðyi − xiÞk22; (11)

which minimizes the objective function by training the network
with sample pairs fyi; xigKi¼1 or fyi; nigKi¼1. When the network fin-
ishes training, the network fθ� is used to recover useful signals or
noise from unseen noisy data. We should mention that the distri-
bution of training and test data should be independent and iden-
tical, which is one of the prerequisites for implementing deep
learning algorithms successfully. Otherwise, the test results
may be incorrect, and the data set bias leads to unreliable pre-
dictions.
When dealing with image denoising problems, it is common to

introduce noise that follows the Gaussian distribution. The noise
distribution is fixed, thus easier to train the network with a learning
noise strategy. The widespread use of DnCNN with residual learn-
ing proves it. However, the reflection distribution and noise distri-
bution typically vary heavily in the shot domain. In other words,
learning reflections or noise in the shot domain is not an easy task.
Fortunately, seismic data in the OVT domain have many sound
characteristics, offering a favorable data foundation for network
learning. OVTs with different offsets are single-fold coverage of the
entire survey, all responding to the same underground structure.
Therefore, the distribution of their reflections is similar. Moreover,
the prestack wavefield of OVT gathers is consistent and continuous.
There is a minor spatial and temporal amplitude variation of reflec-
tions in the OVT domain. In contrast, the noise has substantial
differences at the near, middle, and far offsets. Therefore, the reflec-
tion probability distribution is more stationary than the noise dis-
tribution, making the network easier to learn the reflections.
Corresponding to the preceding analysis, we remove the residual

learning structure in the 3D DnCNN. As illustrated in Figure 2, we
present a network architecture that directly maps the noisy data into
clean reflections through a feedforward neural
network. In the input layer, there is a convolution
function followed by an activation function to in-
crease the nonlinearity of the neural network.
The most commonly used activation function
is the rectified linear unit (ReLU) because it ac-
celerates the network training and, generally,
produces better practice performance than any
other activation function. Therefore, ReLU is
set as the default activation function. The middle
layers contain 15 hidden layers. To facilitate the
deep-network training process, batch normaliza-
tion (BN) is applied prior to each activation func-
tion, which is different from the input layer.
Finally, there is a convolutional output layer.
We use the same padding strategy for each con-
volution operation to ensure that the output is the
same size as the input. It is noteworthy that all
convolution operations are performed in three di-
mensions to maximize the use of seismic spatial
structure information.

EXAMPLES

In this section, we test the proposed method by examining syn-
thetic data with added real scattered noise and a field seismic data
example. The S/N of the denoised data is calculated using the fol-
lowing expression:

S=N ¼ 10 log10
kdtruek22

kdtrue − ddenoisedk22
; (12)

where dtrue denotes the true data prior to denoising and ddenoised

denotes the recovered data after denoising.

Synthetic example

The synthetic data are used to demonstrate the rationality of not
using residual learning. To construct the synthetic training data set,
we follow these steps. We first construct 5D synthetic data and then
sort them into the common-offset gathers. The 5D data set is para-
meterized by a superposition of 18 parabolas of random curvature
and intercept times. The wavelet central frequency is 20 Hz with a
2 ms sampling rate. Figure 3a displays a middle-offset gather. We
strive to simulate the OVT gathers by flattening most reflections.
Then, we use 3D CWT to extract the noise from real OVT gathers
to make the noise look realistic. Figure 3b illustrates scattered noise
gathers from a middle-offset OVT gather with almost no leakage in
it due to carefully selected parameters. Finally, adding them to-
gether results in noisy data in Figure 3c and the network can be
trained by feeding it pair-wise clean data and noisy data.
Two different networks, i.e., with the direct signal learning in

equation 8 and with the residual learning in equation 9, are trained
with these training samples. Note that all of the parameters and hy-
perparameters are kept the same for these two networks for a fair
comparison. To ensure that these two networks have learned the
ability to denoise scattered noise, we apply them to denoise the
noisy training data. From Figure 4, it can be seen that both networks
can produce good results. Even if the results of our network
with direct signal learning are slightly better, there is little differ-
ence. The same conclusion can be drawn from the S/N in Table 1.

Figure 2. Network architectures with two learning strategies. Unlike the well-known
residual learning strategy in 3D-DnCNN, we adopt the direct signal learning strategy
to make it more adaptive to the problem of scattered noise attenuation.
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After training, both networks can improve the S/N of noisy data
from −5.7 dB to more than 12 dB. Their S/N is almost the same,
indicating that the networks have converged.
The denoising performance of these two networks is evaluated

using another gather from the same 5D data set. The clean data,
which are treated as the ground truth, are shown in Figure 5a. Scat-
tered noise from near-offset gather is displayed in Figure 5b. The
noise has a strong energy and almost completely covers all reflec-
tions as shown in Figure 5c, which makes denoising challenging.
As also can be seen in Table 1, the S/N of the noisy data is
−18.8 dB, which is extremely low. Figure 6a and 6b shows the re-
sults produced by the network with residual learning. From the
denoised gather, it is evident that there is some residual noise. Es-
pecially in the shallow layer, the reflections are still obscured by
scattered noise. This is because we have not encountered such noise
types in our training samples. Thus, it is difficult to obtain good test
results with learning noise strategies. On the contrary, our network
produces better results, as shown in Figure 6c and 6d, because we
train the network from the perspective of signals rather than noise.
Similarly, these findings also can be clearly demonstrated by the
quantitative measurement results in Table 1, indicating that the
S/N of our network is further improved by almost 7 dB. It is evident
that a direct mapping strategy is effective when dealing with high
amplitude and high variation noise. In addition, we acknowledge
that the residual learning technique is an excellent tool for dealing
with different sorts of noise. We also show the results with the clas-
sic f-x-y prediction filtering method (Chase, 1992) in Figures 4e, 4f,
6e, and 6f. It is worth mentioning that the scattered noise shows
visible linear features, which are much more complicated to remove
than random noise. In addition, the scattering has a strong energy in
near-offset OVTs. Correspondingly, the conventional method fails
to effectively remove it, as it only achieves a 6 dB improvement on
the test data in Table 1.

Field data example

The workflow we adopt to process field seismic data is illustrated
in Figure 7. As discussed in the previous section, we randomly se-
lect six medium-offset OVT gathers with varying azimuths to serve
as training data. Then, an effective conventional method, 3D CWT
(Zhao et al., 2021), is used to generate corresponding high-quality
labels. Furthermore, we also perform sample selection and sample
cleansing to double-check that the sample quality is satisfactory be-
fore feeding them for training. Once the network has been well
trained, it is used to denoise other testing OVT gathers.
A 3D wide-azimuth survey of Western China has been used to

demonstrate the validity of the proposed method. The offset-azimuth
locations of OVT volumes are displayed in polar coordinates, as
shown in Figure 8. Taking a closer look, we see that this survey con-
tains 35 distinct offsets and 36 distinct azimuths, thus totaling 1260
OVT volumes. The overall amount of data approximately reaches
1 TB. In Figure 8, six red points indicate our training data set con-
struction strategy that six middle-offset OVT volumes with varying
azimuths are filtered by 3D CWT, which is then fed to the network
for training. A baseline approach with a general use of labels is rep-
resented by six green points, which selects three near-offset OVTs
and three middle-offset OVTs located in the same azimuth.
We evaluate our results on the prestack OVT gathers, stacked

OVT gathers, and common-midpoint gathers sequentially. We show
three different types of prestack OVT gathers: near, medium, and far

Figure 3. Synthetic common-offset training data. (a) A clean
middle-offset gather from the 5D data set. (b) The scattered noise
from real data. (c) The noisy data by adding scattered noise to the
synthetic data.
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Figure 4. Results of synthetic training data. We apply the network to the training data set to check whether the network is well trained. (a) The
denoised results obtained by the network with residual learning. (b) The scattered noise removed by the network with residual learning. (c) The
denoised results obtained by the network with direct signal learning. (d) The scattered noise removed by the network with direct signal
learning. It can be seen that their performance toward training data are good and similar, meaning that both networks are well trained.
(e) The denoised results obtained by the f-x-y filtering method. (f) The scattered noise removed by the f-x-y filtering method.
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offsets, whose locations are highlighted by different colored points in
Figure 8. First, we compare near-offset results. Near-offset traces,
which have an almost vertical incident angle, are useful for detecting
azimuth variations, as well as for performing amplitude-variation-
with-offset analyses. However, near-offset traces in land seismic data
are severely distorted by noise, and we can hardly find the reflections.
As shown in Figure 9a, near-surface weak signals are embedded in
much stronger noise, which makes many conventional methods less
effective at extracting those signals. Figure 9b and 9c represents the
denoised results by 3D CWT. Even though the original data have a
low S/N, one can still notice a significant reduction of the coherent
noise in Figure 9b, as well as much clearer reflections. This proves
the fact that the OVT domain is a good choice for noise reduction
because there is a continuous wavefield, and 3D CWT is an effective
tool for denoising the strong scattered noise in the OVT domain. In
this sense, the combination of deep learning, which uses 3D CWT to
build labels, and OVT techniques is promising. Moreover, the noise
distribution is nonuniform, as shown in Figure 9c. Therefore, learning
a mapping of noise with the network should not be the best option.
Figure 9d and 9e shows the denoised data and removed noise by our
proposed method. Our method uses the network to learn the reflec-
tions. The S/N after noise attenuation has been significantly im-
proved, and no obvious damage to signals can be detected in the
noise section. In addition, according to the red boxes, 3D CWT has
little residual noise whereas our network can effectively remove it.
A general use of labels produces highly similar results to 3D

CWT. Specific to the near-offset section shown in Figure 9, their
deep-layer results are slightly different. The near-offset denoised
results based on the general use of labels are shown in Figure 9f
and 9g. Results of the shallow and middle layers (0–4 s) are con-
sistent with our expectation that they perform similarly to 3D CWT.
However, the deep-layer (4–6 s) results exhibit a severe signal leak-
age, as shown in the bottom green box in Figure 9. The possible
explanation lies in the simultaneous use of near- and midoffset
labels. Due to their common underground structure, near- and
middle-offset deep-layer labels should be similar. However, 3D
CWT performs better in middle-offset OVT volumes than in near-
offset volumes. Accordingly, we sometimes train the network with
two different labels for similar input noisy data, making the network
ambiguous. Therefore, the network outputs approximately zero
values in certain regions, and leakage of useful signals occurs. In
contrast, the proposed method uses all middle-offset labels, which
means that all labels have high consistency, resulting in more con-
tinuous denoised results as displayed in the top green box in Fig-
ure 9. From a closer inspection of the results obtained by residual
learning in Figure 9h and 9i, we can draw the same conclusion as

Table 1. S/N comparison of different network architectures
for synthetic data.

Training
data (dB)

Test
data (dB)

Test data
gain (dB)

Original noisy data −5.7 −18.8 —
With residual learning 12.4 −6.0 12.8

With direct signal learning 13.2 1.5 20.3

f-x-y filtering method 2.7 −12.8 6.0

Figure 5. Synthetic common-offset test data. (a) A clean near-offset
gather from the 5D data set. (b) The scattered noise from real
data. (c) The noisy data by adding scattered noise to the synthetic
data.

V512 Liu et al.

D
ow

nl
oa

de
d 

08
/2

2/
22

 to
 3

6.
22

7.
21

0.
12

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

21
-0

65
4.

1



Figure 6. Results of synthetic test data. We apply thewell-trained network to the test data set. (a) The scattered noise removed by the network with
residual learning. (b) The denoised results obtained by the network with residual learning. (c) The scattered noise removed by the network with
direct signal learning. (d) The denoised results obtained by the network with direct signal learning. It can be seen that removing residual learning
can achieve better scattered noise attenuation. (e) The denoised results obtained by the f-x-y filtering method. (f) The scattered noise removed by
the f-x-y filtering method. The scattering is coherent and contains visible linear features, making the conventional method ineffective.
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the previous synthetic experiment that the direct signal learning
strategy is superior residual learning in strong scattered noise
attenuation.
Next, we compare middle-offset results. It is interesting to note

that the S/N of noisy middle-offset gathers is relatively high, and 3D
CWT achieves good results on it, which is the reason why we train
our network on middle-offset gathers. From the time slice results in
Figure 10, we can see that both methods successfully attenuate the
scattered noise. As we can see in Figure 10c and 10e, there is hardly
any evidence of signal leakage, illustrating the high reliability of
both methods. Closer examination of the time slices in Figure 10b
and 10d shows that our method performs better than 3D CWT be-
cause 3D CWT results still have some noise residues. What also is
clear is that our network not only learns the denoising ability from a
3D CWT but also improves it further. Especially in the area shown
in the red boxes, some structural interferences can be observed in
the denoised results using 3D CWT, but our method yields a more
complete suppression of scattered noise.
The S/N of far-offset OVT gathers is lower than the middle offset,

as displayed in Figure 11a. Observing the denoised results in Fig-
ure 11d, our method also yields a good result, indicating that the
network has mastered the ability for denoising the whole survey.
Moreover, the red boxes in Figure 11 highlight that our network
performs better than 3D CWT on the strong energy noise at the
boundary. It results from the adoption of an effective strategy by
direct learning signals, as the signal is relatively constant whereas
the scattered noise fluctuates greatly and is difficult to learn. This
also confirms that our method is more adaptive than 3D CWT.
Despite the fact that the training samples are constructed by 3D
CWT, we find that many details of the network results are superior
to 3D CWT.
In the next step, we explore the stacked results. The OVT vol-

umes are stacked according to the stack range shown in Figure 8.
The partial stacking process is widely used for prestack fracture pre-
diction because the S/N of a single OVT is too low. The crossline
section results are shown in Figure 12. From the stacked results
without noise attenuation in Figure 12a, it is obvious that the
S/N of the stacked OVT data has improved significantly in compari-
son with any original single OVT volume. In spite of this, it also is
evident that the resolution is reduced after stacking, and a consid-
erable amount of noise can still be detected. The stacked results of
denoised data in Figure 12b and 12d reveal that our proposed meth-
ods and 3D CWT can enhance weak signals and produce clearer

events. Furthermore, the energy consistency of our denoised results
is better. Particularly near the yellow arrow, 3D CWT distorts the
reflections and leaks useful signals to the noise section at a greater
rate. Figure 12f and 12g presents the stacked results after denoising
by a general use of labels. This also accords with our previous ob-
servations in Figure 9f and 9g, which showed that a general use of
labels leads to more signal leakage, especially in the red arrow re-
gion. In addition, our method can obtain more continuous results in
the time slice, as shown in Figure 13d. Compared with Figure 13b,
it is clearly noticeable that there are obvious noise residues of 3D
CWT, but our method attenuates them well.
To further illustrate the effectiveness of our method, we denoise

all 1260 OVT gathers and sort them into common-midpoint gathers.
Due to the scattered noise, the primary reflections are seriously ob-
scured in Figure 14a. Our methods and 3D CWT are successful in
attenuating strong scattered noise, as demonstrated by the results in
Figure 14b and 14d, which also has been confirmed previously.
Through detailed examination, it is detectable that there is a very
modest degree of signal leakage as indicated by the yellow arrows
in Figure 14c. However, our method has better fidelity. In addition,
we enlarge the green box area for better comparison. An inspection
of the red boxes in Figure 15 reveals that events have a better
continuity after denoising with our method. In addition, it is a

Figure 7. Workflow of the proposed method.

Figure 8. Maps of OVT volumes in offset-azimuth polar coordi-
nates.
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substantial benefit that our method can simultaneously suppress co-
herent and random noise, making it useful in practice.
In addition to the denoising effect, calculation time also is one of

our major concerns. Table 2 presents the time consumption com-
parison. The advantage of 3D CWT is that it does not require any
training. However, it takes 68.5 min to process one OVT gather with
the Intel Xeon E5-1620 v3 CPU, so the total time to process all
OVT traces is still very long, approximately 61 days. The computa-
tional time is measured based on 3D CWT with fast Fourier trans-
form using the C program, so it can hardly dramatically reduce the
computing time of 3D CWT. Our method provides a significant

reduction in computational time. Including the training time, it only
takes 4.1 days, which can alleviate the excessive computation time
problem in the OVT domain. In addition, we point out that we use a
single GPU here, namely the Nvidia GeForce RTX 2080 Ti, and the
calculation time can be further reduced with additional GPUs.

DISCUSSION

Denoising performance

OVT gathers have excellent data consistency, and 3D CWT and
our method benefit from it. It is somewhat surprising that deep

Figure 9. Crossline section results of a near-offset OVT volume at
2.5 km. (a) Noisy data, (b and c) results using 3D CWT, (d and e)
our results, (f and g) a general use of labels using our proposed net-
work architecture, and (h and i) the results based on residual learning
using the same training samples as our method. As indicated by the
red boxes, 3D CWT has few noise residues, whereas our network can
effectively remove them. Residual learning also has an inferior per-
formance due to evident noise residues. The green boxes reveal that a
general use of labels causes more deep-layer signal leakage than our
method.

Figure 11. Inline section results of a far-offset OVT volume at
2.5 km. (a) Noisy data, (b and c) results using 3D CWT, and (d
and e) our results. The red boxes indicate that our network performs
better than 3D CWT on the strong energy noise.

Figure 10. Time slice results of a middle-offset OVT volume at
3500 ms. (a) Noisy data, (b and c) results using 3D CWT, and (d
and e) our results. As is evident in the red boxes, some structural in-
terferences can be observed in the denoised results using 3DCWT, but
our method yields a more complete suppression of scattered noise.
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learning outperforms the 3D CWT methods even though the train-
ing labels are constructed by 3D CWT. In the field of image denois-
ing, it is almost impossible for supervised deep learning to surpass
labels because their labels are ground truth. In addition to the ap-
propriate network structure, the main reason for our better perfor-
mance is the rational use of labels. On the one hand, middle offsets
have a relatively high S/N, and thus 3D CWT can achieve better
denoising results. With high-quality samples, it is easier for the net-
work to learn the distribution of the reflections, so it produces
cleaner denoising results at near- and far-offset gathers compared
with 3D CWT. In other words, deep learning has learned the most
beneficial aspects of 3D CWT and generalized them to the entire
survey. In a contrast, parameters of 3D CWT are sensitive to noise
energy and must be fine-tuned with different noise levels, which is
highly challenging in practice. Therefore, fixed parameters in 3D
CWT lead to a poor denoising effect in certain areas. On the other
hand, OVT is a popular wide-azimuth cross-spread oriented
processing technology that can analyze azimuthal anisotropy in a
convenient way. To a certain extent, we have incorporated azimuthal
information because we randomly chose different azimuthal OVT
gathers. Nevertheless, we acknowledge that six OVTs in different

directions were chosen based on experience, which requires further
research to determine at least how many OVTs are adequate.
In light of the preceding analysis, there are several possible ways

to continue to improve the denoising effect of the network. First, we
can construct more realistic synthetic data whose distribution is
closer to the field data and jointly train the network with the field
data. The network will learn a more accurate mapping toward re-
flections, thus improving the denoising effect. Second, the denois-
ing performance can be further enhanced by incorporating azimuth-
related information on a large scale. Combining multimodal deep
learning and reciprocal OVT gathers Vermeer (2007) may be help-
ful. Third, another straightforward way is to find a more appropriate
network architecture, such as the transformer (Tay et al., 2020), or
by using the neural architecture search. However, this puts forward
higher requirements for computing resources.

Generalization capability

The typical objective of a supervised deep learning system is to
minimize the noncomputable expected risk by approximately mini-
mizing the computable empirical risk (Kawaguchi et al., 2020). The
generalization gap refers to the difference between empirical and
expected risk, which explains the dependency of a trained model
on the unseen training data set. One desirable goal of machine learn-
ing is enhancing generalization ability (minimizing the generalization
gap). Because it is difficult to collect many noisy and clean data train-
ing pairs, a mismatch between training and testing data commonly
exists. The latter is a significant obstacle in applying deep learning for
processing seismic field data. Using a direct learning strategy, we
have introduced a novel way of attenuating scattered noise in the
OVT domain. In this situation, the networks effectively capture the
intrinsic features of valuable signals. Although noise exhibits differ-
ent features in different OVT gathers, the network still generalizes
well to other OVT gathers in the same study area. The field data ex-
periment shows that the proposed strategy requires a reasonably low
label proportion of 6=1260 ≈ 0.48%, considerably less than the usual

Figure 12. Crossline section results of a stacked OVT volume at
2.5 km. (a) Noisy data without noise attenuation, (b and c) results
using 3D CWT, (d and e) our results, and (f and g) a general use of
labels using our proposed network architecture. The red boxes il-
lustrate that 3D CWT has few noise residues, whereas our network
can remove them effectively. The yellow arrows indicate that our
network is more robust than 3D CWT regarding strong energy noise
at the boundary. As indicated by the red arrows, a general use of
labels leads to more signal leakage.

Figure 13. Time slice results of a stacked OVT volume at 3000 ms.
(a) Noisy data without noise attenuation, (b and c) results using 3D
CWT, and (d and e) our results. It is apparent that 3D CWT has
obvious noise residues in the denoised results, but our method at-
tenuates them well.
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proportion (10%) of supervised learning currently
used in similar research.
Different factors affect the generalization

capability of networks for seismic data denoising,
such as the type of survey used to acquire the data,
subsurface geologic conditions, seismic source
wavelets, noise types, S/N, etc. If one considers
the scattered noise attenuation task as an example,
the networkmay not produce satisfactory results if
the input data have a different bandwidth from the
training data. The preceding influencing factors
may change substantially even within the same
work area. For example, a land work area may
span the Loess Plateau and desert area, making the
network difficult to generalize. In addition, the di-
versities of seismic domains and noise types are
two significant factors limiting the generalization
of the network. For example, suppose that the network is trained to
attenuate scattered noise in the OVT domains. In that case, there is a
very low probability that the network can attenuate scattered noise in
other seismic domains. Furthermore, seismic noise types are diverse,
and each kind of noise has different characteristics, making it prob-
lematic to reach a significant level of generalization. For instance,
training a network for scattered noise attenuation would not serve
to remove ground roll because they have different features, violating
the assumption that training and testing data arise from the same

Figure 14. Denoising results of common-midpoint gathers. (a) Noisy data, (b and c) results using 3D CWT, and (d and e) our results. By
comparing the yellow arrows, a lower degree of signal leakage can be observed from our results. The amplified region is marked in the green
box.

Figure 15. Magnified denoising result comparison in common-midpoint gathers.
(a) Noisy data, (b and c) results using 3D CWT, and (d and e) our results. The red boxes
indicate that reflections have a better continuity after denoising with our method.

Table 2. Time consumption comparison.

Training
time

Test time for
one OVT (min)

Total time for
1260 OVTs (days)

3D CWT — 68.5 61

Our method Two days 5.9 4.1
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distribution. As a preliminary step to generalizing the proposed
method to data sets not included in the training phase, we need
large-scale and diverse training data presented in different domains,
noise types, frequency bandwidths, etc. The latter might be unfeasible
given the size of such a data set, and hence we believe that it is often
better to restrain the application of deep learning to one particular do-
main and for a specific type of noise as is done in this paper.
It also is important to note that overfitting in deep networks is an-

other crucial factor that may impede the generalization. Overfitting
leads to poor generalization capability, and several regularization
methods have been proposed to alleviate it. Typically, there are
two types of regularizations: implicit and explicit. Explicit regulariza-
tions can be adopted to avoid overfitting; they are not structural parts
of the network architecture, the algorithms, or the data, so usually,
explicit regularization can be added or removed easily. Typical exam-
ples are weight decay, loss function update, dropout, data augmenta-
tion, and early stopping. In contrast, the implicit regularization method
incorporates the characteristics of the network architecture, the learn-
ing algorithm, or the data to regulate the effective generalization
capability of a neural network. Examples are optimization methods,
convolution layers, and BN. Please note that the preceding classifica-
tion is not strict. For example, the dropout can sometimes be regarded
as an implicit regularization method (Wei et al., 2020). Once the net-
work is trained using regularization methods with varying data sets
containing abundant noise types, it should have a strong generaliza-
tion ability to process different field data sets unseen during the train-
ing phase and be suitable for other noise processing tasks.

CONCLUSION

We propose a method for denoising prestack strong scattered
noise by combining the advantages of deep learning and OVT par-
titioning. In the OVT domain, the wavefield continuity and data
consistency provide a conducive learning environment for the net-
work. The massive amount of OVT gathers can make full use of the
high computational efficiency of deep learning. We select a straight-
forward network architecture to learn reflections and randomly se-
lect the middle-offset OVT gathers as the training volumes. Our
field data results demonstrate that only a limited number of OVT
volumes is sufficient to suppress the noise of the entire survey. This
approach offers great potential in practice because prestack data are
enormous, and deep learning can be up to 10 times less time-con-
suming than the conventional methods described in this paper. In
addition, weak signals in the deep layer also can be better recovered
by our method. Consequently, our approach is well suited for ap-
plications in which azimuthally varying attributes are useful, such
as fracture detection.
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