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Poststack Seismic Data Denoising Based
on 3-D Convolutional Neural Network

Dawei Liu, Wei Wang, Xiaokai Wang , Member, IEEE, Cheng Wang, Jiangyun Pei, and Wenchao Chen

Abstract— Deep learning has been successfully applied to
image denoising. In this study, we take one step forward by using
deep learning to suppress random noise in poststack seismic data
from the aspects of network architecture and training samples.
On the one hand, poststack seismic data denoising mainly aims
at 3-D seismic data. We designed an end-to-end 3-D denoising
convolutional neural network (3-D-DnCNN) that takes raw 3-D
cubes as input in order to better extract the features of the
3-D spatial structure of poststack seismic data. On the other
hand, denoising images with deep learning require noisy–clean
sample pairs for training. In the field of seismic data processing,
researchers usually try their best to suppress noise by using
complex processes that combine different methods, but clean
labels of seismic data are not available. In addition, building
training samples in field seismic data has become an interesting
but challenging problem. Therefore, we propose a training sample
selection method that contains a complex workflow to produce
comparatively ideal training samples. Experiments in this study
demonstrate that deep learning can directly learn the ability
to denoise field seismic data from selected samples. Although
the building of the training samples may occur through a
complex process, the experimental results of synthetic seismic
data and field seismic data show that the 3-D-DnCNN has learned
the ability to suppress the Gaussian noise and super-Gaussian
noise from different training samples. Moreover, the 3-D-DnCNN
network has better denoising performance toward arc-like imag-
ing noise. In addition, we adopt residual learning and batch
normalization in order to accelerate the training speed. After net-
work training is satisfactorily completed, its processing efficiency
can be significantly higher than that of conventional denoising
methods.

Index Terms— 3-D, convolutional neural networks (CNNs),
seismic data denoising, training sample selection.
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I. INTRODUCTION

SUPPRESSING random noise in seismic data is a conven-
tional but still an active topic in seismic signal processing

because random noise is one of the main factors that lead to
reductions in the signal-to-noise ratio (SNR) of seismic data
and may further cause unreliable seismic inversion results.
Random noise suppression is divided into prestack denoising
and poststack denoising. The purpose of prestack denoising is
to suppress the noise interference on the original field records
as much as possible. The purpose of poststack denoising is
to suppress the noise that is not completely suppressed by
prestack denoising and the noise caused by processing itself
in order to further improve the quality of the section. This
study mainly aims at denoising 3-D poststack seismic data.

Many researchers have applied some advanced signal
processing techniques to suppress the random noise in seis-
mic data during the past several years. Principle component
analysis (PCA) [1], polynomial fitting [2], singular value
decomposition (SVD) [3]–[5], K-L transform [6], [7], inde-
pendent component analysis (ICA) [8], [9], the predicting filter
[10]–[12], and the Cadzow filter [13], [14] are the common
methods of random noise suppression based on correlation.
The above-mentioned methods have achieved some good
practical applications. In addition, many time–frequency tools
have been applied to suppress the random noise in seismic
data. The Fourier transform is the basis of many methods
of seismic data denoising [15], including a discrete cosine
transform (DCT) [16] and domain deconvolution filtering
[17]. In order to make the spectrum effectively represent the
local features of time signals, the method of time-windowing
is proposed. This includes the short-time Fourier transform
(STFT) [18]. The wavelet transform [19], [20] can decompose
signals on multiple scales by choosing a suitable wavelet
basis function. Therefore, the wavelet transform has good
localization characteristics in both the time domain and the
frequency domain.

By damping or thresholding the coefficients associated with
noise in the wavelet domain, we can reject random noise
in seismic data [21]. To better represent anisotropic seismic
data, the multidirectional sparse transform was developed. The
curvelet transform [22] is a typical sparse multiscale transform
and has been widely used in seismic data denoising [23], [24].
In summary, all the above-mentioned signal processing tools
denoise random noise by using different basis functions to
represent the seismic data and then using a thresholding
method in the transform domain. In order to represent seismic
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data more sparsely, which makes the differences in the trans-
form domain between a useful signal and random noise more
obvious so that a useful signal and noise can be separated more
easily, overcomplete dictionaries [25] for sparse representation
were proposed. Overcomplete dictionaries can optimally find
the best combination of some basis functions to represent
data sparsely and have been applied to image denoising [26]
and seismic data denoising [27]. In general, the denoising
performance of overcomplete dictionaries is superior to that
of a conventional fixed dictionary.

In addition, the adaptive filter [28], [29], edge-preserving
smoothing [30], [31], empirical mode decomposition [32],
nonlinear filter [33]–[35], the Bayesian inversion [36], and
nonlocal means [37] were applied to denoise seismic data.
The above-mentioned conventional methods can successfully
suppress the random noise of seismic data, but each has its
own shortcomings. A shared common shortcoming is that
the parameters of the above-mentioned methods need to be
artificially selected based on different seismic data. In general,
the exploration area of seismic data is very large, and the seis-
mic data of different regions possess some different features
because of different underground structures. It is difficult to
select optimal parameters for different data. In the face of
this shortcoming, the supervised deep learning has attracted
increased attention because it is a data-driven algorithm and
has good robustness.

In recent years, deep learning has made significant achieve-
ments in the field of image recognition [38], [39], nat-
ural language processing [40], and autonomous driving [41].
Based on the great success of deep learning in the above-
mentioned fields, many researchers have introduced deep
learning in the field of seismic signal processing. Valentineu
and Trampert [42] used an autoencoder to learn seismic
waveform features and encoded high-dimensional seismic
signal features into low-dimensional features, which is a
key step for subsequent nonlinear tomography inversion.
Valentine et al. [43] used an autoencoder to study geomor-
phologic features. This has the ability to recognize com-
plex patterns, and the recognition accuracy can exceed 80%.
Liu et al. [44] used deep learning to extract features auto-
matically and solved the problem of sensor drift effectively.
Dahlke et al. [45] and Araya-Polo et al. [46] used deep learn-
ing with different loss functions to predict faults from original
seismic data and obtained high accuracy in synthetic data
tests.

Moreover, Vikraman et al. [47] used deep learning to
classify seismic waveforms in real time. After fully training,
the identification rates of foreshock, mainshock, and after-
shock could reach higher than 99%. Korjani et al. [48] used
deep learning to predict the petrophysical parameters of a new
well from a large amount of logging data. The predicted results
were almost identical to the actual records of the new well. Wu
and Cao [49] used a continuous restricted Boltzmann machine
to extract lithologic features and used an SVM to carry
out lithologic identification. The recognition accuracy reached
81.9%, which was higher than that of the principal component
analysis. DeVries et al. [50] used deep learning to obtain the

effective expression of the viscoelastic solution of a large-
scale rheological structure at any time and at any position,
and the result had a higher temporal and spatial resolution.
Cao [51] used deep learning to predict natural gas reservoirs
and found that deep learning could extract differences in the
intrinsic features of gas and nongas reservoirs. Wu et al. [52]
used deep learning to estimate fault orientations and found
that deep learning can accurately estimate fault orientations.
Ma et al. [53] used deep learning to detect faults in 3-D
seismic images and found that fault probability calculated by
deep learning outperformed coherence technology. Gramstad
and Nickel [54] used deep learning to detect salt boundary
and found that deep learning could reduce the interpretation
turnaround time of both top and base of salt. Li et al. [55]
used deep learning to suppress the scattered ground-roll noise
automatically.

As a typical deep learning method, convolutional neural
networks (CNNs) have exhibited great denoising performance
in the field of image denoising. Many network models
have been successfully applied to image denoising, includ-
ing the multilayer perceptron [56], stacked sparse denois-
ing autoencoders [57], and denoising CNNs (DnCNNs) [58].
Compared with conventional image denoising methods, the
above-mentioned network models can obtain a similar or even
higher SNR and have a faster calculation speed owing to
the heavy use of GPUs. To a certain degree, the random
noise of seismic data is similar to the random noise of an
image. Because CNNs have achieved good performance in
image denoising, our motivation in this study is to explore
seismic data denoising via CNNs. It should be pointed out
that the random noise in this study also includes arc-like
imaging noise, which is not consistent with a stratigraphic
structure.

Seismic data are inherently 3-D or higher tensors. However,
most of CNN denoising methods are based on the 2-D
convolution kernels. While 2-D CNN has been shown useful
in solving these problems [59], [60], it intrinsically loses the
3-D context of the original seismic data, which limits the
performance of the overall system.

In this article, we propose a 3-D DnCNN (3-D-DnCNN)
to suppress random noise in seismic data. The 3-D-DnCNN
is expanded to 3-D from a DnCNN by using 3-D con-
volution kernels. Useful signals in poststack seismic data
have coherence in 3-D space, and such a 3-D network can
extract its 3-D space structural features more effectively
than the 2-D networks. With a residual learning strategy, a
3-D-DnCNN can suppress random noise by implicitly remov-
ing the extracted useful 3-D signals in the hidden layers.
However, the input data of a 3-D-DnCNN are some 3-D
cubes of raw poststack seismic data, and the multidimensional
input data bring more challenges compared to 2-D image
denoising.

On the other hand, training samples play a significant
role in the unparalleled success achieved by deep learning
models [61]. However, constructing appropriate training sam-
ples in the seismic data denoising field is much more difficult
than in the image denoising field. In general, the goal of image



1600 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 3, MARCH 2020

Fig. 1. Framework based on 3-D-DnCNN for seismic data denoising. (a) Denoising framework of synthetic seismic data. (b) Denoising framework of field
seismic data.

denoising is to remove additive white Gaussian noise (AWGN)
with a special standard deviation. There are clean images and
noisy images at our fingertips. However, completely clean seis-
mic data do not exist. Inspired by [62], a natural way to build
training sampling is to regard the denoised seismic data by the
conventional method as a clean label. However, the denoised
seismic data with different conventional denoising methods is
not exactly the same everywhere, which makes it difficult to
find the ground truth (the clean seismic data) fed to the deep
learning models. Therefore, this article aims to propose a 3-D
denoising method with a 3-D-DnCNN model and proposes an
effective strategy of selecting training samples for training in
3-D poststack seismic data.

To summarize, this article makes the following major
contributions.

1) We propose an end-to-end trainable deep CNN for
seismic data denoising. In contrast to some existing
image deep neural network-based denoising methods,
which are often 2-D networks, this network consists
of 3-D convolution kernels.

2) An effective strategy for selecting training samples from
field seismic data is proposed, through which relatively
ideal training samples fed to the 3-D-DnCNN can be
obtained.

3) This study validates the effectiveness of batch nor-
malization (BN) and residual learning to denoise 3-D
poststack seismic data.

4) Its uniform architecture design makes the 3-D-DnCNN
a framework that generalizes well for both synthetic
seismic data and field seismic data. More importantly,
the 3-D-DnCNN can achieve similar or even better
denoising results compared to conventional denoising
methods when using almost the same parameters.

The remainder of this article is organized as fol-
lows. Section II provides the detailed architecture of the
3-D-DnCNN, including building training samples for synthetic
seismic data and field seismic data. In Section III, synthetic
seismic data and field seismic data denoising experiments are
conducted to evaluate the 3-D-DnCNN, and some discussions
are offered. Finally, some conclusions are given in Section IV.

II. PROPOSED FRAMEWORK

Fig. 1 shows the entire deep learning framework of 3-D
seismic data denoising based on a 3-D-DnCNN. In this
framework, the synthetic seismic data and field seismic data
are separated into two blocks: a training block and a testing
block. The original 3-D noisy seismic data volume Y is divided
into Ytraining and Ytesting. Ytraining and the corresponding label
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Fig. 2. Architecture of the proposed 3-D-DnCNN network for seismic data denoising.

Fig. 3. Time slice of field seismic data.

Xtraining lay the foundation for organizing training samples
fed to the 3-D-DnCNN. As the synthetic seismic data and

field seismic data have different characteristics, we choose
different training-sample selection methods to select training
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Fig. 4. Sample selection with different thresholds. (a) Original seismic data profile. (b) Calculating faulty confidence with original seismic data profile.
(c)–(j) Results with thresholds of 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, and 0.45, respectively.

Fig. 5. Synthetic seismic data. (a) Time slice of synthetic seismic data at
the 100th sampling point. (b) Inline profile of synthetic seismic data at the
100th sampling point. (c) Crossline profile of synthetic seismic data at the
100th sampling point.

samples from Ytraining and Xtraining. Then, the selected training
samples are fed to the 3-D-DnCNN. After the hyperparame-
ters for training are configured, the 3-D-DnCNN is trained
for dozens of epochs. Finally, the testing block Ytesting is
employed to test the denoising performance of the trained
3-D-DnCNN.

A. Training Samples

Training samples are very important because they deter-
mine the features extracted by the network model and affect

Fig. 6. Noise suppression on time slice. (a) Noisy data. (b) Noise added to
time slice. (c) Denoised by the proposed method. (d) Noise removed by the
proposed method.

the denoising performance of the network model. Different
training-sample selection methods are adopted for the syn-
thetic seismic data and field seismic data.

1) Training Samples for Synthetic Seismic Data: Similar
to the ground truth in image denoising, the synthetic seismic
data Xtraining are regarded as a completely clean label. Then,
Ytraining can be obtained by Ytraining = Xtraining + v, where v
is the AWGN. Note that noise v in the synthetic seismic data
is a stationary signal. Therefore, training-sample cube pairs
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Fig. 7. Noise suppression on inline profile. (a) Noisy data. (b) Noise added
to the profile. (c) Denoised by the proposed method. (d) Noise removed by
the proposed method.

Fig. 8. Noise suppression on crossline profile. (a) Noisy data. (b) Noise added
to the profile. (c) Denoised by the proposed method. (d) Noise removed by
the proposed method.

in synthetic seismic data can be synchronously and uniformly
generated from Ytraining and Xtraining.

2) Training Samples for Field Seismic Data: Unlike syn-
thetic seismic data, field seismic data inevitably receive noise
pollution during the exploration and data processing stages and
do not have completely clean data as a label. In the absence
of label data Xtraining, which is absolutely clean, finding the
cleanest X′

training is a key step in denoising with network
models. With better training samples, the network model can
extract useful signals more clearly. Generally, the underground
structures in a large survey region have similarities, which
means that the structures of the seismic imaging useful signals
are similar. Based on this, the useful signal features extracted

Fig. 9. Probability density distribution of original noise and noise removed
by the network.

from a small high-SNR block can be used to infer the useful
signals of the rest block of the seismic data. In this way,
the powerful denoising ability of the high-SNR block can
be extended to all of the seismic data. Therefore, providing
better training samples can increase the ability to extract
useful signals, thereby can significantly boost the denoising
performance of the network.

We propose an effective strategy to select relatively ideal
labels from X′

training and then build noise-clean training-sample
cube pairs together from Ytraining. This strategy is divided into
three steps.

First, we select a relatively high-SNR block in the 3-D
seismic data as a training block Ytraining, and the rest of
the blocks are selected for testing block Ytest. It is generally
known that there are many factors affecting the SNR of seismic
data during the exploration of field seismic data. For example,
some local exploration regions used high-density exploration
technology and hence can acquire high-SNR seismic data.
In addition, high-SNR seismic data can also be obtained in
exploration regions whose surface conditions are conducive
to seismic exploration. Taking a loess-covered region as an
example, the SNR of the seismic data in a thin loess layer
is better than that in a thick loess layer. In combination with
these favorable factors, a small block of relatively high SNR
from all of the seismic data usually exists. In the experiment
involving field seismic data in this study, a small block of high
SNR is selected as training block Ytraining, as indicated by the
red box in Fig. 1(b).

Second, conventional denoising methods that are as
advanced as possible are applied to suppress the noise of
the training block Ytraining in order to construct the desired
training sample pairs. After careful comparison, a three-step
denoising workflow proposed by [63], which is a very effective
conventional denoising method, is suitable to denoise field
seismic data in this study and is used to denoise Ytraining.
The above-mentioned workflow includes the Cadzow filtering
[13] from the inline direction and the crossline direction and
edge-preserving filtering [64]. For the sake of simplicity, the
above-mentioned workflow is called the conventional method
in this article. Thus, X′

training is obtained. After the first two
steps, the SNR of X′

training is almost satisfactory. However, con-
sidering the complexity of the field seismic data, the denoising
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Fig. 10. Training data profiles. (a) Noisy inline profile. (b) Denoised inline profile by the conventional method. (c) Noise removed in the inline profile.
(d) Noisy crossline profile. (e) Denoised crossline profile by the conventional method. (f) Noise removed in crossline profile.

performance of some conventional denoising methods will
vary with the location and structure of the seismic data.
There are still some regions of X′

training where random noise
resides and the continuity of events is affected. Therefore, it is
necessary to further select better training samples and remove
training samples that have poor denoising performance.

Third, we use faulty confidence obtained by a gradient struc-
ture tensor (GST) to select regions with good event continuity
from X′

training to generate the selected training-sample pairs.
The GST [65] is a widely used tool for estimating seismic
structural and stratigraphic features, such as detecting faults
and measuring the continuity of events. For this reason, GST
is applied to further select training-sample cube pairs from
Ytraining and X′

training. Then, the detailed steps for calculating
the faulty confidence and selecting sample pairs are as follows.
X̂′

training is obtained by X′
training after a Hilbert transform, as

follows:

X̂′
training = H

[
X′

training

] = X′
training ∗ 1

π t
. (1)

The instantaneous amplitude A and instantaneous phase ψ
of X′

training can be calculated as follows:

A =
√

X′2
training + X̂′2

training (2)

ψ = arctan
X̂′

training

X′
training

. (3)

Neighboring cubes centered at every point in the ψ form
a new group of data sets Z = {z1, z2, . . . , zN } ∈ R

w×w×b,
where w indicates the length and weight of the cubes, b

indicates the height of the cubes, and N indicates the total
number of voxels in ψ . Then, we calculate the GST for each
neighboring cube in Z according to the following formula:

gi =
⎡
⎢⎣

g2
x gx gy gx gz

gx gy g2
y gygz

gx gz gygz g2
z

⎤
⎥⎦ (4)

where gx , gy, gz indicate the time direction derivative,
crossline direction derivative, and inline direction derivative
of zi , and g indicates the average of all points in zi . For
each gi in the new data set G = {g1, g2, . . . , gN } ∈ R

3×3,
three eigenvalues λi

1, λ
i
2, and λi

3 in order of large to small can
be obtained through an eigen decomposition. λi

1, λ
i
2, and λi

3
extract the relevant information contained in gi . Inspired
by [65], the fault confidence C is applied to determine whether
the training sample cubes are discarded. C is given by

C = 2λ2 (λ2 − λ3)

(λ1 + λ2) (λ2 + λ3)
. (5)

This fault confidence measure takes values between 0 and 1.
Interval [0, 1] can be divided into two parts by setting the
threshold value T . In general, training block Ytraining and
corresponding label X′

training are too large to directly feed
to the 3-D-DnCNN. Therefore, Ytraining and X′

training are cor-
respondingly divided into some cube sets {y1, y2, . . . yL} ∈
R

n×n×n and {x′
1, x′

2, . . . x′
L} ∈ R

n×n×n within a sliding 3-D
window of n × n × n voxels. This study regards C of x′
as a criterion for selecting training-sample pairs from cube
pairs {(y1, x′

1), (y2, x′
2), . . . , (yL, x′

L)}. Cube pairs belonging
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Fig. 11. Time slice denoised by the 3-D-DnCNN network. (a) Time slice of the denoised results based on the conventional method. (b) Time slice of the
denoised results based on the 3-D-DnCNN network. (c) Time slice of the denoised results based on the 2-D-DnCNN network (inline cascade crossline).
(d) Time slice of the denoised results based on the 2-D-DnCNN network (crossline cascade inline).

to {(y1, x′
1), (y2, x′

2), . . . , (yL, x′
L)} with a cube center fault

confidence value of C ∈ [0, T ] are reserved, which indicates
flat continuous reflectors and fault structures. Meanwhile, cube
pairs with a cube center fault confidence value of C ∈
[T, 1] are dropped, which indicates a random structure and
cannot reflect the underground clearly. Following the above-
mentioned steps, the relatively ideal training-sample cube
pair set {(y1, x′

1), (y2, x′
2), . . . , (yM , x′

M )}(M < L) is gener-
ated and can be fed to the 3-D-DnCNN for training.

B. Network Architecture

The input of the 3-D-DnCNN is noisy seismic data yi =
xi +vi , where xi is the useful signal and vi is the noise that this
study aims to suppress. {(yi , xi )}M

i=1 represents M noisy–clean

training-sample cube pairs after selection (replacing xi with x′
i

for the field seismic data). For the 3-D-DnCNN, we employ
the residual learning method to train a residual mapping
�(yi) ≈ vi . Then, we obtain the output ẋi = yi −�(yi), which
indicates a useful denoised signal. We adopt the averaged mean
squared error between the desired denoised seismic data xi and
estimated ones ẋi from the original noisy seismic data as a loss
function, as follows:

l(�) = 1

2N

M∑

i−1

‖ẋi − xi‖2
F (6)

where � indicates the trainable parameters in the
3-D-DnCNN. These are updated through backpropagating the
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Fig. 11. (Continued.) Time slice denoised by the 3-D-DnCNN network. (a) Time slice of the denoised results based on the conventional method. (b) Time
slice of the denoised results based on the 3-D-DnCNN network. (c) Time slice of the denoised results based on the 2-D-DnCNN network (inline cascade
crossline). (d) Time slice of the denoised results based on the 2-D-DnCNN network (crossline cascade inline).

gradients of l(�). Equation (6) can be also unfolded into a
new form as follows because we employ residual learning:

l(�) = 1

2N

M∑

i−1

‖�(yi ;�) − (yi − xi )‖2
F (7)

where l(�) measures the averaged mean squared error
between the desired residual noise vi and the estimated noise
�(yi ). Fig. 2 illustrates the architecture of the proposed
3-D-DnCNN. In the following, we elaborate on the archi-
tecture of the 3-D-DnCNN and the strategy for reducing the
boundary effect.

1) 3-D Architecture: Recently, many practical applica-
tions have benefited from converting 2-D convolution kernels

to 3-D convolution kernels, such as lung nodule detec-
tion [66], cerebral microbleeds detection [67], action recog-
nition [68], and remote sensing image classification [69].
Different results for medical image segmentation with 2-D
patches, triplanar patches, and 3-D patches are compared
in [70] and showed that the 3-D approach performs best
at patch classification. This is beneficial because 3-D con-
volution kernels can capture the full range of spatial
variation.

However, there are significant challenges in generalizing
2-D convolutional networks to 3-D. First, the computation cost
is a big blocking because 3-D convolutions are more compute-
intensive than 2-D convolutions given the same computing
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Fig. 11. (Continued.) Time slice denoised by the 3-D-DnCNN network. (a) Time slice of the denoised results based on the conventional method. (b) Time
slice of the denoised results based on the 3-D-DnCNN network. (c) Time slice of the denoised results based on the 2-D-DnCNN network (inline cascade
crossline). (d) Time slice of the denoised results based on the 2-D-DnCNN network (crossline cascade inline).

resources. The computational complexity of 3-D volumes has
a fatal impact on recognition tasks. However, different from
the recognition task, the denoising task can work well with
a small receptive field, and our network does not need a
fully connected layer that is computationally intensive. To cir-
cumvent this, we train our network on smaller 3-D cubes.
The accessibility of affordable parallel computing resources
via GPUs has made it feasible to train some 3-D networks.
Second, training a 3-D network is more difficult than training
a 2-D network. The main reason is that there are much
more parameters in the 3-D network, which are easy to
be overfitting without enough training data, resulting in the

poor generalization ability of the network. This is exactly the
reason why 3-D network sometimes loses to 2-D network (for
example, relatively small data scale of video data sets [68]).
However, seismic data sets are relatively large scale and are
sufficient for optimizing the enormous number of parameters
in 3-D network. In addition, we adopt some training tricks,
such as BN and residual learning, to get over it. The denoising
results for the synthetic seismic data and field seismic data
in subsequent experiments demonstrated that our method has
good denoising generalization ability. Thirdly, 3-D network
requires 3-D annotated training data. We use a 3-D denoising
conventional method to obtain the 3-D annotated training data
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Fig. 11. (Continued.) Time slice denoised by the 3-D-DnCNN network. (a) Time slice of the denoised results based on the conventional method. (b) Time
slice of the denoised results based on the 3-D-DnCNN network. (c) Time slice of the denoised results based on the 2-D-DnCNN network (inline cascade
crossline). (d) Time slice of the denoised results based on the 2-D-DnCNN network (crossline cascade inline).

and use fault confidence, which is also calculated in 3-D to
further select the training data.

Then, we discuss our proposed 3-D network architecture
in detail. The 3-D convolutional layers are basic elements of
3-D-DnCNNs with depth D. Inspired by the Visual Geometry
Group network (VGG-net) [38], we set the size of the 3-D
convolutional kernels to be 3 × 3 × 3 and remove the pooling
layers. Incorporating with the rectified linear units [ReLU,
max(0, x)] [71] and BN [72], there are three types of layers,
as shown in Fig. 2, with three different colors. For the first
layer, the input is one cube yi of size n×n×n, and the output
is c(1) feature cubes of size n(1) ×n(1) ×n(1) generated by c(1)

filters of size 3 × 3 × 3. ReLUs are used for nonlinearity.

For layer k ∈ [2, D − 1], if the (k + 1)th layer has c(k) input
feature cubes of size n(k) × n(k) × n(k) and a convolutional
filter bank that contains c(k+1) convolutional filters of size
3×3×3×c(k), then this layer generates c(k+1) output feature
cubes of size n(k+1) × n(k+1) × n(k+1). BN is added between
the convolution and ReLU. For the last layer, a convolutional
filter of size 3 × 3 × 3 × c(D−1) is used to reconstruct the
output.

To summarize, our 3-D-DnCNN model has two main fea-
tures: on the one hand, all convolutional filters are 3-D, which
makes the network easier to extract 3-D spatial structural
features of the 3-D seismic data volume compared to 2-D
convolutional filters. On the other hand, the residual learning
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Fig. 12. (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network. (c) Noise removed by the 2-D-DnCNN network
(inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

method and BN are adopted to accelerate the training process
and boost the denoising performance because 3-D networks
have more parameters and are easier to overfit. By incor-
porating convolution with a nonlinearity activation function
ReLU, the 3-D-DnCNN can gradually separate a useful signal
structure from the noisy seismic data through the hidden
layers, as shown in Fig. 2 (top).

2) Reducing Boundary Artifacts: In the seismic data
processing field, it is a basic requirement that the output
signal size should stay the same as the input signal size.
However, this may lead to boundary artifacts mainly because
the length of the input signal is finite and the number of
overlapped denoising windows at the boundary is lower than

that in the middle regions. To overcome the above-mentioned
drawback, several methods of extending the input signal have
been proposed, such as zero padding, symmetric boundary
padding, antisymmetric padding, and periodic padding [73].
Among them, the computational cost of zero padding is the
lowest because multiplying zero by any number is always zero.
This advantage in computation will increase as the number of
feature cubes c and the convolution filter dimensions increase,
which causes more multiplication at the boundary. Therefore,
we adopt zero padding in each layer to reduce the number
of boundary artifacts and to ensure that the size of each
feature cube generated by the middle layers is the same as
the size of the input signal. By doing this, the sizes of the



1610 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 3, MARCH 2020

Fig. 12. (Continued.) (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network. (c) Noise removed by the 2-D-DnCNN
network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

feature cubes generated by different layers are equal, i.e.,
n(1) = n(2) = · · · = n(D). The number of zero paddings at
each dimension P can be calculated as follows:

P = (O − 1) × S + K − W

2
, (8)

where O indicates the edge length of the output cube, W
indicates the edge length of the input cube, K indicates
the edge length of the convolutional filter, and S indicates
the stride of the convolutional filter. Later, both the syn-
thetic seismic data denoising experiment and field seismic
data denoising experiment verify that a simple zero-padding
strategy can overcome boundary artifacts. This good property
is a powerful aspect of the 3-D-DnCNN, which performs better
than conventional methods.

C. Integration Batch Normalization and Residual Learning
for 3-D Seismic Denoising

BN is proposed for alleviating internal covariate shift prob-
lems. Using BN, the distribution of output signals to be
processed by the next layer is approximately fixed during
training processing, and this speeds up the training. In this
study, BN is conducted at every activation function in the
3-D-DnCNN. If the kth convolutional layer has ck output
feature cubes of size n(k) × n(k) × n(k), then the j th feature
cube output with BN and ReLU can be formulated as

[�y
k] j = [yk] j − E([yk] j )

Var([yk] j )
(9)

[ỹk] j = [γ k] j × [�
y

k] j + [βk] j (10)
[yk] j = R([ỹk] j ) (11)
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Fig. 12. (Continued.) (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network. (c) Noise removed by the
2-D-DnCNN network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

where [yk] j ∈ R
n(k)×n(k)×n(k)

indicates the output j th feature
cube of the kth convolutional layer, E(·) and Var(·) indi-
cate the expectation and variance computed over the feature
cube, respectively, and R(·) indicates the ReLU activation
function that sets negative values to zero without changing

the positive values.
�y

k
with a mean of zero and variance

of 1 is obtained by normalizing yk . Using parameters γ
and β, which are updated during the training processing,

ỹk can be calculated from
�y

k
by a linear transform. Thus,

the input of the activation function ReLU is normalized by
BN, and the output of ReLU is likely to have a stable
distribution.

Residual learning [39] is proposed to solve degradation
problems, i.e., stacking more layers will degrade accuracy. In
general, there are two forms to asymptotically approximate the

desired clean label when using CNNs for denoising seismic
data. One is building the original mapping �(y) to predict x.
The other is building residual mapping �(y) to predict v,
which is also called residual learning. Residual learning has
a faster convergence speed when the first form is more like
an identity mapping. This is because learning the residual
mapping with reference to the inputs is much easier than
learning unreferenced mapping, which learns the label as a
new one if the label is closer to the inputs than to zero. Note
that the amplitude of the useful signal in seismic data is almost
ten times the amplitude of the noise, and �(y) is much closer
to an identity mapping than �(y). Therefore, we adopt residual
learning to solve the degradation problem and to accelerate
the training processing in the 3-D-DnCNN by adding a single
shortcut connection between the input and output.
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Fig. 12. (Continued.) (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network. (c) Noise removed by the 2-D-DnCNN
network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the performance of the proposed
3-D-DnCNN is evaluated with synthetic seismic data and field
seismic data. The field seismic data are poststack seismic data
from an area of approximately 700 km2 in Daqing Oilfield.
The shallow-layer structures and deep-layer structures of the
field seismic data in this study are basically very similar in the
whole work area. One time slice of the field seismic data is
shown in Fig. 3. All experiments are implemented in Python
and Tensorflow. Tensorflow using data flow graphs is the
most popular deep learning framework. All experiments are
implemented on Ubuntu 14.04, 48-core Intel E5-2650 CPUs
with 128 GB of memory and an Nvidia Quadro M4000 GPU.

A. Experimental Setting

1) Training and Testing Data: For Gaussian denoising
with a known specific noise level in synthetic seismic data
with a size of 300 × 300 × 300, we select a block of size
180 × 180 × 180 as a training block. This is indicated by the
red cube in Fig. 1. We found that changing the position of the
training block causes only a slight improvement in the denois-
ing performance. We select the rest block of synthetic seismic
data volume as the testing block. Following the principle in
[58], we set the receptive field size of the 3-D-DnCNN to
35 × 35 × 35 with a corresponding depth of 17. We set the
size of the training samples generated from the training block
to 40 × 40 × 40 and crop 6 × 10000 cubic patches to train
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Fig. 13. Magnify of the black box in a time slice.

the model. We consider an arbitrary noise level, i.e., σ = 30.
It can be seen that the random noise has obvious interference
with the useful signals in Figs. 6(a), 7(a), and 8(a). Due to
memory size limitations, we set the size of the testing cubes to
180×180×180. Adjacent testing cubes do not overlap or inter-
sect, and cubes at the boundary are padded by zero when
generated from the testing block.

For field seismic data denoising, we first set the parameters
of the training-sample selection method. In order to calculate
fault confidence C , we set the size of z to 5 × 5 × 25.
Another important parameter of the sample selection is the
fault confidence threshold T , which is used to further select
the training sample pairs. Random noise in the field seismic
signals of this study also contains arc-like imaging noise that
was generated during the process of seismic imaging. We want
to use T to filter out sample cubes with arc-like imaging noise
while preserving the sample cubes with faults and continuous
events as much as possible. We conducted an experiment to
find the proper fault confidence threshold T .

The experiment was conducted on a section of field seismic
data that was full of arc-like imaging noise and also contained
faults. These are indicated by the red box and yellow arrows,
respectively, in Fig. 4(a). As shown in Fig. 4(c)–(j), the regions
containing arc-like imaging noise have a higher C and can
successfully be dropped by thresholding C below T . Mean-
while, the regions containing faults have a medium C and are
successfully reserved with a well-chosen threshold T . Here,
we made a compromise between filtering out arc-like imaging
noise regions and reserving fault regions. We eventually set
T to 0.65. Second, we selected approximately 66 km2 of

coverage for training block Ytraining with a relatively high
SNR from field seismic data, as indicated by the red box
in Fig. 3. The whole work area is a combination of many
small work areas. Except for one small work area, the number
of stacking fold is 150, and the others are 84 stacks. Our
training block Ytraining is selected from the 150-stack area,
which has a relatively high SNR. The rest areas beyond the
training block Ytraining are selected as the testing block Ytest.
Third, we applied the state-of-the-art conventional method
with cascading Cadzow filtering and edge-preserving filtering
to denoise the seismic data in the training block in order to
obtain X′

training. Finally, we generated training-sample cube
pairs {(yi , x′

i )}M
i=1 with size 40 × 40 × 40 and stride of 10

from X′
training using fault confidence C . Testing cubes were

generated in the same way as those of the synthetic data. After
denoising, we restored the testing block by stitching the testing
cubes according to the original order.

2) Network Training: We adopted the loss function in (7)
to predict the residual v by learning the residual mapping
�(y;�). The weight � was initialized by the method in [74]
and updated by minibatch stochastic gradient descent as
follows:

�′ = �− α

m

m∑

i=1

∂l(yi ,�)

∂�
(12)

where α indicates the learning rate and m indicates the
minibatch size. α is decayed from the initial value 1e − 3
to 1e − 4 after five epochs. We set m to 6 and trained
20 epochs for our 3-D-DnCNN model. The training settings
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Fig. 14. Denoising results of the magnified part in the time slice. (a) Denoised by the conventional method. (b) Denoised by the 3-D-DnCNN network.
(c) Denoised by the 2-D-DnCNN network (inline cascade crossline). (d) Denoised by the 2-D-DnCNN network (crossline cascade inline).

of the synthetic seismic data and the field seismic data
were the same for verifying the generalization of the
3-D-DnCNN.

B. Denoising Performance of Synthetic Seismic Data
Fig. 5 illustrates two vertical profiles and one time slice

of the original noisy synthetic seismic data. The positions
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Fig. 14. (Continued.) Denoising results of the magnified part in the time slice. (a) Denoised by the conventional method. (b) Denoised by the 3-D-DnCNN
network. (c) Denoised by the 2-D-DnCNN network (inline cascade crossline). (d) Denoised by the 2-D-DnCNN network (crossline cascade inline).

of the vertical profiles and time slice shown in Fig. 5 are
at the 100th sampling point in the direction of the inline,

crossline, and time. It can be seen that there is an obliquely
curved fault structure in the synthetic seismic data. The cubic
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Fig. 15. Removed noise of the magnified part in the time slice. (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN
network. (c) Noise removed by the 2-D-DnCNN network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

patches presented in Section III-A are fed to the 3-D-DnCNN
network. After approximately 80 h of training with a single

GPU, the loss function of the 3-D-DnCNN is stable, which
means that the network training has been completed. Then,
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Fig. 15. (Continued.) Removed noise of the magnified part in the time slice. (a) Noise removed by the conventional method. (b) Noise removed by the
3-D-DnCNN network. (c) Noise removed by the 2-D-DnCNN network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline
cascade inline).

we use the well-trained network to suppress the random noise
of all synthetic data.

The SNR results for our proposed method on the synthetic
seismic data are listed in Table I. As one can see, the SNR
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Fig. 16. Noisy inline profile.

TABLE I

DENOISING RESULTS OF 3-D-DNCNN

is greatly improved after suppressing random noise using the
3-D-DnCNN network. Figs. 6–8 show the results of suppress-
ing random noise on the time slice and vertical profiles. Com-
pared with the original noisy synthetic data in Fig. 5, we find
that the 3-D-DnCNN network has successfully suppressed
most of the random noise, and the continuity and consistency
of the reflection events have been significantly improved, while
the fault structure has been effectively maintained. To further
illustrate the feasibility and effectiveness of the proposed
method, a statistical analysis is performed on the random
noise removed by the network. Fig. 9 shows the probability
density distribution of the original noise and noise removed
by the network. It can be seen that both the original noise and
the noise removed by the network are significant Gaussian
distributions. The variance and kurtosis values of the original
noise and the noise removed by the network in Table II
are close, and the kurtosis values of approximately zero also
reflect the Gaussian distribution characteristics when the noise
is removed. To sum up, by learning the training samples
constructed by the training block of the synthetic seismic data,
the 3-D-DnCNN network successfully extracted the features of
the random noise in the synthetic seismic data and used the
extracted features to suppress the random noise in all of the
seismic data. Therefore, it is feasible to suppress the random
noise of the Gaussian distributions in seismic data by using
a 3-D-DnCNN. More importantly, with good training samples
for training, the noise removed by a well-trained 3-D-DnCNN
does not contain an obvious effective signal structure. That is
to say, deep learning automatically learns the ability to remove

noise from samples, and its denoising ability has strong fidelity
to the fault regions in the seismic data.

C. Denoising Performance of Field Seismic Data

The training-sample cube pairs generated by the method in
Section II-A were fed to the 3-D-DnCNN. After approximately
170 h of iterative training with a single GPU, the network
training was completed. As shown in Fig. 10, we randomly
selected two profiles from the inline and crossline directions
to show our training data according to the positions of the
two blue lines in Fig. 3. Note that the training time for
the field seismic data was longer than that of the synthetic
data because of the larger number of training samples within
an epoch. We used the well-trained 3-D-DnCNN network to
suppress random noise in all of the field seismic data. The
noise suppression time was approximately 90 min with a single
GPU. The suppression time was far below the 24 h required
for the conventional suppression method with a single CPU
node, which was used to generate the training label X′

training.
The denoising results of our proposed methods and the specific
state-of-the-art conventional method used to generate X′

training
are shown from different directions.

In addition, most existing deep learning methods for 3-D
volume denoising typically convert 3-D data into 2-D slices or
2-D multichannel representations [75] and then training in 2-D
CNNs. While these architectures of 2-D networks might be
successful in some problems, they are suboptimal in their use
of available 3-D information. To demonstrate it, we compare
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Fig. 17. Denoising results of inline profile. (a) Denoised by the conventional method. (b) Denoised by the 3-D-DnCNN network. (c) Denoised by the
2-D-DnCNN network (inline cascade crossline). (d) Denoised by the 2-D-DnCNN network (crossline cascade inline).

the denoising performance in a 2-D network and 3-D net-
work for field seismic data, given similar architecture and

same training sample construction method. For 2-D networks,
we use 2-D-by-2-D learning that is usually implemented in
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Fig. 17. (Continued.) Denoising results of inline profile. (a) Denoised by the conventional method. (b) Denoised by the 3-D-DnCNN network. (c) Denoised
by the 2-D-DnCNN network (inline cascade crossline). (d) Denoised by the 2-D-DnCNN network (crossline cascade inline).

TABLE II

STATISTICAL CHARACTERISTICS OF NOISE FROM SYNTHETIC SEISMIC DATA

two ways. One way is to learn the inline direction first
and then learn the crossline direction. We call it the inline–
cascade–crossline (ICC) denoising method. Conversely, it is
called the crossline–cascade–inline (CCI) denoising method
when the network learns the crossline direction first and then
learns the inline direction. With the same computing resources,
the training and testing time of 2-D network in our experiment
is about a quarter of that of 3-D network, but 2-D network
needs to be trained and tested twice.

1) Denoising Results in Time Slice: First, we compare
the conventional denoising results and the 3-D-DnCNN net-
work denoising results on an arbitrarily selected time slice.
The denoising results of the conventional method are shown
in Fig. 11(a). It can be found that the conventional method
has effectively suppressed the random noise. The denoising
results of the 3-D-DnCNN network on the same time slice are
shown in Fig. 11(b). It can be observed that the 3-D-DnCNN
network also successfully suppressed the random noise. Fur-
ther observing the areas indicated by the three black boxes
in Fig. 11(a) and (b), the field seismic data acquired in these
areas are seriously corrupted because only low-dose explosives
can be used for exploration in these areas due to the dense
distribution of villages. By comparing the denoising results,
it can be found that the structure of the useful signal in
the denoising results obtained by the 3-D-DnCNN network
is clearer. This is because the network uses training samples

selected from the area that has the best denoising performance
of the conventional method. The 3-D-DnCNN network learned
the good noise suppression ability of the conventional method
in the training area during the training process and then applied
this good noise-suppression ability to suppress the random
noise of all 3-D seismic data. Fig. 11(c) and (d) shows the
ICC and CCI denoising results, respectively. It can be seen that
both 2-D networks can also effectively remove random noise.
However, such a cascaded two-step denoising method suffers
from the drawback that the perturbation error of the first step
would be amplified at the second step, which may cause more
damages to the useful signals. Subsequent denoising results
prove that the damage caused by 2-D networks to the useful
signal is greater than that of the 3-D network.

To further illustrate the differences between these methods,
we observe the noise removed by the conventional method,
the 3-D-DnCNN network, and ICC and CCI denoising meth-
ods for the same time slice. Fig. 12(a) shows the random
noise removed by the conventional method. It can be seen that
the noise removed by the conventional method is randomly
distributed over the entire time slice and has no obvious
structural features. Fig. 12(b) shows the noise removed by the
3-D-DnCNN network for the same time slice. Compared with
Fig. 12(a), we note the following two facts. First, there is no
obvious structure in the noise removed by the 3-D-DnCNN
network and the noise removed by the conventional method,
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Fig. 18. Removed noise of inline profile. (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network. (c) Noise removed
by the 2-D-DnCNN network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

indicating that the two methods for suppressing random noise
are effective. Second, in the area indicated by the three black

boxes, the SNR is relatively low, and the noise energy removed
by the 3-D-DnCNN network is strong. However, in the training
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Fig. 18. (Continued.) Removed noise of inline profile. (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network.
(c) Noise removed by the 2-D-DnCNN network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

Fig. 19. Noisy crossline profile.

area where the seismic data have a high SNR, the noise energy
removed by the network is weak. Comparing Fig. 12(b) with
Fig. 12(c) and (d), we can observe that the 2-D networks cause
more damage to the useful signal than the 3-D network does.
This is because no matter which direction the 2-D network
denoises first, it will interfere with the other direction so that
the final result will cause more damage to the useful signal.
This is similar to the conventional 2-D denoising method.

2) Magnifying Denoising Results in Time Slice: For a
clearer view of the above-mentioned facts, we magnify the
black box of the time slice in Fig. 3, as shown in Fig. 13.
The corresponding denoising results and removed noise are
shown in Figs. 14 and 15, respectively. Obviously, we can
draw the following conclusions. The 3-D-DnCNN network

has learned the ability of the conventional method to suppress
random noise from the training samples. However, the ability
of the 3-D-DnCNN network to suppress random noise is not
simply a copy of the conventional method. The noise energy
suppressed by the 3-D-DnCNN network has the characteristics
of weak energy in the region with high SNR and strong
energy in the region with low SNR. That is to say, the
3-D-DnCNN network denoising method is more adaptive than
the conventional method. At the same time, comparing the
two regions indicated by two yellow arrows in Fig. 15(b)
with that in Fig. 15(a), (c), and (d), it can be observed
that the noise removed by the 3-D network contains very
few useful signals than the noise removed by the other
methods.
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Fig. 20. Denoising results of the crossline profile. (a) Denoised by the conventional method. (b) Denoised by the 3-D-DnCNN network. (c) Denoised by
the 2-D-DnCNN network (inline cascade crossline). (d) Denoised by the 2-D-DnCNN network (crossline cascade inline).

3) Denoising Results in Profiles: In order to make a clearer
comparison of the difference between the networks and the

conventional method, this article presents two vertical profiles
according to the positions of the two yellow lines in Fig. 3.
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Fig. 20. (Continued.) Denoising results of the crossline profile. (a) Denoised by the conventional method. (b) Denoised by the 3-D-DnCNN network.
(c) Denoised by the 2-D-DnCNN network (inline cascade crossline). (d) Denoised by the 2-D-DnCNN network (crossline cascade inline).

The noisy inline profile is shown in Fig. 16. The denoising
results of the inline profile are shown in Fig. 17. To further
illustrate the differences among the four methods, we observe
the noise removed by the conventional method, the 3-D-
DnCNN network, and ICC and CCI denoising methods. The
noise removed by the conventional method on the inline
profile is shown in Fig. 18(a). It can be seen that the noise
suppressed by the conventional method is distributed randomly
over the profile, and the conventional method has successfully
suppressed the random noise. The noise removed by the 3-D-
DnCNN network on the inline profile is shown in Fig. 18(b).

Compared with Fig. 18(a), we find that the 3-D-DnCNN
network also successfully suppressed the random noise. The
random noise removed by the 3-D-DnCNN network and the
conventional method is generally similar across the entire pro-
file. That is to say, the 3-D-DnCNN network obtains a random
noise suppression capability for all of the 3-D seismic data
by learning training-sample pairs generated from the small
training block. In addition, comparing the regions indicated by
the black rectangle in the two figures, it can be found that the
ability of the network to suppress random noise is not simply
a copy of the conventional method. The noise removed by the
3-D-DnCNN network in the black rectangular region has a
more obvious structure than that by the conventional method.
Looking at Fig. 18(c) and (d), we can also observe that the
noise with structure is suppressed well by 2-D-DnCNN.

The structural noise that is difficult to remove by the
conventional method is 3-D arc-like imaging noise produced
during the imaging process. Therefore, this denoising result
also shows that the CNN-based denoising methods have a
more powerful denoising ability toward arc-like imaging noise.
There are two main reasons for the improvement of arc-
like imaging noise removal ability. First, most conventional
denoising methods, including the conventional method used
in this article, denoise the whole 3-D seismic data with 2-D

or 3-D sliding windows. Taking the conventional method used
in this article as an example and considering the complexity
of seismic data, a local edge-preserving filter is adopted to
make the filter adaptive to the complex changes of dip angle
and stratum orientation. The denoising process of different
patches is independent. However, seismic data in the same
work area have similarity in both useful signal and noise
distribution. Most conventional methods are local filtering
methods, which cannot make full use of self-similarity of
the seismic data. On the contrary, the CNN-based denoising
method is a nonlocal denoising method. Our loss function
is to minimize the average errors between network outputs
and labels. Although CNNs are locally perceived in a single
patch, they share network parameters during the whole training
process. In this way, our network can learn many repetitive
features in the training process and make full use of the self-
similarity of seismic data. That is to say, both 3-D-DnCNN
and 2-D-DnCNN can learn useful signals and noises from
a global point of view, so as to better remove the arc-like
imaging noise. Second, there is little arc-like imaging noise
in the labels of the training-sample pairs fed to the network
as most of the arc-like imaging noise has been dropped after
the sample selection. After sample selection, the 3-D-DnCNN
network can accurately identify the useful signal masked by
the arc-like imaging noise and then improve the ability to
suppress the arc-like imaging noise.

Although the 2-D network has good noise suppression
capability, the denoising performance of 3-D network for field
seismic data is better than that of 2-D leaning. The damage
caused by the 2-D-by-2-D learning to the useful signals is
significantly greater than that of 3-D learning, as can been
seen from red boxes in Fig. 18.

Due to the lack of the ability to extract features in 3-D space
simultaneously, the denoising result of 2-D-by-2-D learning
can only guarantee the denoising result in one direction is
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Fig. 21. Removed noise of crossline profile. (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network. (c) Noise
removed by the 2-D-DnCNN network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

good, but the denoising result in another direction is relatively
poor. Taking inline direction denoising as an example, the CCI

denoising method causes greater damage to useful signals than
the ICC denoising method does. The unbalanced denoising
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Fig. 21. (Continued.) Removed noise of crossline profile. (a) Noise removed by the conventional method. (b) Noise removed by the 3-D-DnCNN network.
(c) Noise removed by the 2-D-DnCNN network (inline cascade crossline). (d) Noise removed by the 2-D-DnCNN network (crossline cascade inline).

TABLE III

STATISTICAL CHARACTERISTICS OF THE REMOVED NOISE FROM FIELD SEISMIC DATA

Fig. 22. Probability density distribution of noise removed by the conventional
method and noise removed by the network.

performance makes 2-D learning denoising inferior to that
of 3-D learning. However, 3-D learning can capture the full
range of spatial variation expected from the seismic data and
obtain good denoising results in all directions.

We further compared the noise removed on the crossline
profile shown in Fig. 19. The denoising results of the crossline
profile are shown in Fig. 20. Fig. 21(a) shows the noise
removed by the conventional method, and Fig. 21(b) shows
the noise removed by the 3-D-DnCNN network. Comparing
Fig. 21(a) with Fig. 21(b), the denoising results also confirm
our above-mentioned conclusions. Fig. 21(c) and (d) shows the

noise removed by ICC and CCI denoising methods, respec-
tively. Similarly, we can observe red boxes from Fig. 21 that
the damage to the useful signal caused by the 2-D network is
greater than that by the 3-D network.

Fig. 22 shows the probability density distribution of the
noise removed by the conventional method and the noise
removed by the network. By comparison, it can be found
that the probability density distributions of the noise removed
by the two methods are basically the same. This also proves
that the network has successfully learned the random noise
suppression ability for 3-D seismic data. To further com-
pare the differences between the two denoising methods,
this study calculates the statistical characteristics of the
noise removed by the two denoising methods, as shown
in Table III.

Comparing the data in Table III, we find the following
facts. First, the average values of the noise removed by the
two denoising methods are close. Second, the kurtosis values
are also close, that is, the number of extreme values of
the noise removed by the network is basically equal to that
removed by the conventional method. In addition, the kurtosis
values are all greater than 0, indicating that the probability
density distribution of the noise is subject to a super-Gaussian
distribution. Finally, the variance of the noise removed by
the network is significantly greater than that removed by the
conventional method, that is, the degree of arc-like imaging
noise removed by the network is greater than that of the
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conventional method. This is consistent with the fact observed
in Fig. 12(a) and (b) that the energy of noise removed by the
network in the high-SNR area is weaker than that in the low-
SNR area.

In summary, we chose a small high-SNR block that had
no obvious arc-like imaging noise as a training area. With
sample selection, relatively ideal training-sample pairs whose
labels contained almost no arc-like noise were fed to the
3-D-DnCNN. Then, the 3-D-DnCNN was utilized to denoise
all of the field seismic data. In the figures of denoising results
we show, the 3-D-DnCNN can suppress random noise, includ-
ing arc-like imaging noise, effectively. The denoising ability
of the 3-D-DnCNN network is obtained by learning training
samples generated by sample selection. Although the process
of our sample selection is very complex, the 3-D-DnCNN also
learns the inherent knowledge of this complex process and
gains a strong ability to denoise all of the seismic data in the
whole work area. However, this ability is not a complete copy
of the conventional denoising method because the training
samples were selected by the method in Section II-A. This also
proves that the network can learn its denoising ability from the
more ideal training samples so that the denoising results have
better fidelity and generalization. Moreover, because the 3-D
network can fully capture 3-D spatial structure information,
the damage of 3-D network denoising to useful signals is less
than that of the 2-D network.

IV. CONCLUSION

In this article, a novel deep CNN called 3-D-DnCNN was
proposed for seismic data denoising, inspired by the fact
that the poststack seismic data has a 3-D spatial structure.
The denoising ability of a 3-D-DnCNN can be automatically
learned from the given training-sample pairs. We adopted
different strategies to build training-sample pairs for synthetic
seismic data and field seismic data. In experiments with
synthetic seismic data, we built training samples by adding
the Gaussian random noise to the clean synthetic seismic
data. With these good labels, the 3-D-DnCNN exhibited an
impressive performance in denoising noisy synthetic seismic
data with fault reservation. In the experiments with field
seismic data, the random noise was super-Gaussian.

We applied a training-sample selection method that con-
tained an excellent conventional method to obtain the com-
paratively ideal training-sample pairs. Although the process
of training sample selection is complex, the 3-D-DnCNN
learns the denoising ability for field seismic data directly from
the training samples. The denoising results for the synthetic
seismic data and field seismic data demonstrated that our
method has general denoising ability on both the Gaussian
random noise and the super-Gaussian random noise while
reserving the useful signals. Moreover, when the energy of
arc-like imaging noise was relatively strong compared with
the useful signal, it could be found that the conventional
method was difficult to suppress the arc-like imaging noise,
but the network had obvious suppression ability on the arc-like
imaging noise.
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