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ABSTRACT

Seismic vertical resolution is critical for accurately identi-
fying subsurface structures and reservoir properties. Improv-
ing the vertical resolution of vintage seismic data with strongly
supervised deep learning is challenging due to scarce or costly
labels. To remedy the label-lacking problem, we develop a
weakly supervised deep-learning method to improve vintage
seismic data with poor resolution by extrapolating from nearby
high-resolution seismic data. Our method uses a cycle gener-
ative adversarial network with an improved identity loss
function. In addition, we contribute a pseudo-3D training
data construction strategy that reduces discontinuity artifacts
caused by accessing 3D field data with a 2D network. We de-
termine the feasibility of our method on 2D synthetic data and
achieve results comparable to the classic time-varying spec-
trumwhiteningmethod on field poststackmigration data while
effectively recovering more high-frequency information.

INTRODUCTION

Seismic records acquired by seismic exploration provide valuable
information regarding stratigraphic structure, stratification, and
fault information, particularly in the high-frequency component.
However, seismic records typically need better resolution due to
the decrease in frequency, primarily resulting from the following
causes. On the one hand, stratum absorption leads to seismic wave-
let energy attenuation, waveform broadening, and resolution reduc-
tion; on the other hand, due to the existence of multiple reflections
between layers, the reflected waves of each layer will interfere with
each other when they return to the surface, reducing the resolution

of the collected seismic records. As high-resolution (HR) seismic
data sets are essential for fine interpretations of stratigraphic struc-
tures, resolution improvement for seismic data has been extensively
studied.
Traditional methods for improving seismic data resolution gen-

erally include deconvolution (Wiggins, 1978; Taylor et al., 1979;
Levy and Fullagar, 1981; Sacchi, 1997; Velis, 2008; Gholami and
Sacchi, 2013; Sui and Ma, 2020; Zhang et al., 2022), spectral
whitening (Bian and Zhang, 1986), spectral blueing (Lancaster
and Whitcombe, 2000; Kazemeini et al., 2010), and inverseQ filter-
ing (Wang, 2006; Xue et al., 2019; Ke et al., 2023). Under certain
handcrafted prior assumptions, these methods greatly increase
seismic data resolution and are widely used in the industry. Despite
this, their performance remains limited and cannot be substantially
improved further due to the lack of prior knowledge actively derived
from HR seismic data.
Recent developments in deep learning have led to a renewed in-

terest in data-driven methods (Kaur et al., 2020; Yu and Ma, 2021;
Liu et al., 2022a). The implementation of end-to-end training em-
powers neural networks to acquire prior knowledge directly from
HR data, resulting in more effective resolution improvement than
traditional methods. Especially in the image superresolution field,
many classic networks (Dong et al., 2015; Kim et al., 2016a, 2016b;
Mao et al., 2016a; Lai et al., 2017; Ledig et al., 2017; Tong et al.,
2017; Liang et al., 2021) achieve remarkable success, contributing
to the potential usefulness of deep learning to improve actual seis-
mic data. Along with this rapid development, seismic data resolu-
tion improvement based on deep learning has received increasing
attention from scholars over the past three years. Choi et al. (2019)
use convolutional U-net to improve the vertical resolution of
seismic data, demonstrating its benefits for thin-bed resolution.
Chen et al. (2019) use an iterative deep neural network for HR seis-
mic inversion, allowing it to estimate the wavelet and reflectivity
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simultaneously. Generative adversarial networks (GANs) are re-
nowned for their ability to simulate data distribution autonomously.
As a result, this benefit effectively addresses generative modeling
problems, such as the image superresolution task. Motivated by this,
Zhang et al. (2019) adopt GAN to improve seismic data resolution,
which recovers more subtle and continuous reflection than traditional
methods. To improve the resolution of noisy seismic data, Li et al.
(2021) propose a deep network that simultaneously achieves resolu-
tion improvement and seismic denoising. To illuminate the black box
and increase network interpretation, Chen et al. (2021) design an op-
timization-inspired deep-learning inversion solver that accelerates the
solution of blind HR inverse problems. To date, studies investigating
seismic resolution improvement with deep learning have primarily
focused on strongly supervised deep learning, which necessitates
low-resolution (LR)-HR data pairs. More concretely, achieving this
requires producing HR labels that correspond precisely to LR data.
However, in real-world situations, paired data are unavailable. In gen-
eral, we can construct HR labels based on forward modeling or the
traditional methods mentioned in the previous paragraph to mitigate
this issue. The former requires accurate prior knowledge of stratig-
raphy, which is considerably restrictive, to produce reliable HR la-
bels. In addition to the challenge of obtaining superior results, the
latter is in a predicament because deep-learning results cannot sig-
nificantly surpass the traditional methods for labeling LR data. Con-
sequently, a contribution to research aimed at eliminating the manual
construction of matching HR labels is urgently needed.
Recent research on weakly supervised learning (Jiang et al., 2021;

Wei et al., 2021) provides new insights into handling signal enhance-
ment problems with unpaired LR-HR data, thereby lessening the bur-
den of generating hand-labeled data sets. As a famous deep network
architecture, GAN is widely used to solveweakly supervised learning
problems (Ignatov et al., 2018; Li et al., 2018, 2020; Wang et al.,
2020a, 2020b, 2021). In addition to a forward generator and a dis-
criminator that are implemented in the supervised GAN, weakly su-
pervised GAN usually adopts an additional reverse generator,
resulting in a cycle-in-cycle network architecture. For example, using
this architecture, cycle GANs (CycleGANs) (Zhu et al., 2017), GANs
that learn to discover relations between different domains (Disco-
GANs) (Kim et al., 2017), and dual learning GANs (DualGANs)
(Yi et al., 2017) achieve remarkable performance in image-to-image
translation algorithms based on weakly supervised learning. In par-
ticular, cycle-in-cycle GAN (CinCGAN) (Yuan et al., 2018) success-
fully solves the single image superresolution problem with the cycle-
in-cycle network architecture. As a result of significant success in the
image processing field, improving image resolution without LR-HR
pairs is now feasible. However, there is still uncertainty about
whether weakly supervised learning can effectively recover the
high-frequency component from LR seismic data.
With the development of exploration technology and HR

processing technology, HR seismic data of high quality are becom-
ing increasingly available. These HR seismic data usually involve
extensive exploration costs and entail several complex processing
steps, which contain rich artificial prior knowledge. It would be
a significant loss if these seismic data were not properly exploited
to their full potential. In contrast, vintage seismic data sets can still
provide valuable underground information with better resolution.
Therefore, we aim to investigate the possibility of improving LR
seismic data through unpaired HR seismic data. Specifically, we
propose a CycleGAN to capture the characteristics of HR seismic

data and master the ability to improve the vertical resolution of LR
seismic data through weakly supervised learning. For simplicity, we
assume that the work area distance between the unpaired LR-HR
seismic data sets is not far, so their subsurface structural features
do not change significantly. Inputs to the network are LR seismic
data from one work area and targets for network learning are HR
seismic data from another adjacent work area. After training with
the unpaired data, the network learns a distribution mapping from
the LR seismic data to the HR seismic data, enabling it to extrapo-
late information from HR seismic data to improve the resolution of
the LR vintage seismic data thereafter.
We first demonstrate the feasibility of our method on 2D syn-

thetic data and then extend it to 3D field poststack migration data.
An innovative loss function is designed by combining the latest de-
velopments in weakly supervised learning with the characteristics
of 3D seismic data, which makes cross-regional training relatively
stable. In addition, we introduce a pseudo-3D training data con-
struction method by sampling randomly in the crossline and inline
directions simultaneously. Compared with sampling only along a
specific direction, random sampling can more effectively exploit
3D spatial features and reduce processing artifacts. The synthetic
and field experiments demonstrate that the unpaired training strat-
egy alleviates the necessity for paired label data and increases the
flexibility of deep learning.

METHODS

The present research explores, for the first time, the effects of
weakly supervised learning and GAN on improving the resolution
of seismic data. The basic premise of our methodology is that HR
improvement results for LR data should exhibit similar features and
data distribution to HR data collected from a nearby survey. As a
means of exploring the similarities between the LR survey and the
HR survey, we adopt CycleGAN as our backbone and adapt it to our
problem, as described from the three perspectives in the following.
We first introduce the designed CycleGAN architecture. Then, a
novel loss function tailored to the characteristics of seismic data
is proposed for guiding the training process and preserving useful
signal structures. Finally, we present a pseudo-3D random sampling
method for building field training data. Note that the weakly super-
vised learning described in this paper differs from Zhou (2018),
who divides weakly supervised learning into three typical types:
incomplete, inexact, and inaccurate. In this paper, weak supervision
is characterized as all training data with labels, but these labels are
incorrect. We also refer to it as weak supervision to differentiate it
from strong supervision.

Network architecture

The proposed weakly supervised learning method to improve
the resolution of seismic data is accomplished with CycleGAN.
As shown in Figure 1, the network framework includes a forward
generator, a reverse generator, and a discriminator. The forward gen-
erator G discerns a mapping from LR data to HR data. Its input x is
the LR seismic data derived from a vintage seismic data set, and its
learning target y is from another HR survey. The output y 0 is the HR
result with features similar to y. The reverse generator F simulates the
reverse process of G, i.e., mapping the HR seismic data back to the
original LR data to ensure the reversibility of the HR process by G.
Specifically, its input is the HR output y 0 from G, whereas its output
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x 0 is a degraded LR result similar to x. The discriminator D is used to
evaluate and improve the generation effect of G. To distinguish the
generated y 0 from y, D estimates a probability that y is more realistic
than y 0. The intention of trying to fool D directs G to synthesize HR
data that are more realistic than y. By updating F,G, andD iteratively,
the generatorG is finally able to produce HR data y 0 highly similar to
y. This confirms that y 0 achieves a reliable resolution improvement of
x because the underground structure between the LR survey and its
neighboring HR survey is similar.
Figure 2 shows the detailed architecture of our generator and dis-

criminator. As shown in Figure 2a, the forward generator G and the
reverse generator F use the same architecture and are trained jointly,
but their parameters are updated separately. We design a 37-layer net-
work with the following characteristics that make it more adaptable to
our needs. (1) To prevent damaging useful information, there are no
pooling layers included. (2) Multiresidual blocks (He et al., 2016) are
used to enhance performance in deep networks. (3) The batch normali-
zation (BN) layer is removed. The BN layer may introduce artifacts
when the network becomes deeper, especially when training GAN net-
works, resulting in limited generalizability (Wang et al., 2018). Con-
sequently, removing the BN layer enhances the generalization ability
of the model. In addition, the removal of the BN layer helps to improve
training stability and consistency. (4) The subpixel convolution layer
(Shi et al., 2016) is applied to perform feature reorganization on the
extracted multiple feature maps that reflect stratigraphic structure.
Using the subpixel convolution layer, more contextual information
can be captured through a larger receptive field, allowing for more
realistic detail generation (Wang et al., 2020a, 2020b).
The discriminator architecture is shown in Figure 2b. A total of

nine layers are present in the model, primarily assembled by the
convolution layer, the BN layer, and the activation layer. We use
leaky rectified linear unit (LeakyReLU) (Maas et al., 2013) as
the activation function. In the final layer, the sigmoid activation
layer is used to determine a probability between zero and one.

Loss functions

Loss functions play a crucial role in deep learning because they
determine how network output is penalized during the optimization
of network weights. Determining a suitable loss function that reduces
prediction error and prevents overfitting is neces-
sary. To solve the seismic resolution improvement
problem, we carefully formulate the loss function
in combination with the characteristics of seismic
data, as described in the following two aspects:
generator loss and discriminator loss.

Generator loss

The reverse and forward generators share the
same network architecture, but their loss func-
tions differ, resulting in independent parameter
updates. We use an adversarial loss LGAN, a cycle
consistency loss Lcyc, an identity loss Lidt, and a
total-variation (TV) loss LTV to compose the loss
function of the forward generator:

LGen ¼ w1LGAN þ w2Lcyc þ w3Lidt

þ w4LTV; (1)

where w1, w2, w3, and w4 represent the trade-off weights assigned to
each loss function. Using heuristic experiments on our testing data,
we select the appropriate values for these weights, anticipating that
their individual contribution to the final loss function is harmonious
and collectively provides satisfactory results.
The adversarial loss is used to ensure that G provides an output

that can deceive D to maximum effect; that is, y 0 is judged to be
actual HR data by D. To stabilize the training procedure, we use the
least-squares loss (Mao et al., 2016b) instead of the negative log
likelihood used in Goodfellow et al. (2020). The adversarial loss
is defined as

LGAN ¼ 1

N

XN

i¼1

kDðGðxiÞÞ − 1k2; (2)

where N represents the number of training samples, also called the
batch size of the network training.
The cyclic consistency loss is designed to maintain consistency

between x and y by ensuring the reversibility of the HR forward
generator process. It is defined as

Figure 1. The proposed framework. The forward generator, the re-
verse generator, and the discriminator are referred to as G, F, and D,
respectively. Input to G is the LR data x derived from a vintage
seismic data set. Generator G attempts to produce HR data y 0 with
features similar to the HR data y collected from another survey.
Generator F maps y 0 to LR x 0 with features similar to x, ensuring
that the HR process of G is reversible.

Figure 2. Network architectures. (a) This architecture applies to the forward generatorG
and the reverse generator F. The numbers following the terms k, n, and s denote the
kernel size, the number of filters, and the stride size, respectively. (b) The architecture
of the discriminator D.
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Lcyc ¼
1

N

XN

i¼1

kFðGðxiÞÞ − xik2: (3)

As an aside, the reverse generator F is exclusively governed by this
constraint.
In the image processing field, identity loss is usually introduced

to preserve color composition or maintain tint consistency be-
tween input and output images during the generation of paintings
(Zhu et al., 2017). For our particular application, identity loss
is used to constrain G and ensure the resolution improvement
is in the correct direction. As a typical example, we can formulate
it as

L 0
idt ¼

1

N

XN

i¼1

kGðȳiÞ − yik2; (4)

where ȳ denotes the LR data obtained by low-pass filtering of y.
Notably, this degradation process is essential to assist G in estab-
lishing a valid mapping from LR to HR data. Not surprisingly, it is
possible that this mapping deviates from the actual LR-HR map-
ping because the actual LR data are not low-pass filtering of
existing HR data. However, it does assist G in capturing some
key elements that are required to generate HR data. In addition,
because other constraints exist, the final output of G is rectified
by all of them simultaneously. Hence, it does not matter which
degradation method is adopted to obtain ȳ, and we select low-pass
filtering in this case because of its simplicity.
In addition, we incorporate the latest advances to improve iden-

tity loss further. Recent research reveals that an integrated approach
with the L1 loss and the multiscale structural similarity (MS-SSIM)
loss LMS-SSIM leads to better image restoration results (Zhao et al.,
2016). Then, we propose the following new definition of identity
loss:

Lidt ¼
1

N

XN

i¼1

ðL1 þ LMS−SSIMÞ: (5)

The MS-SSIM is an image quality evaluation method sensitive to
local structural changes (Wang et al., 2003). The term multiscale
refers to the process of downsampling an image by a factor of
two after a low-pass filter is applied iteratively. Given two seismic
images u and v, measurements at different scales are combined to
obtain an overall MS-SSIM evaluation:

MS − SSIMðu; vÞ ¼ ½lMðu; vÞ�αM

·
YM

j¼1

½cjðu; vÞ�βj ½sjðu; vÞ�γj ; (6)

where M denotes the largest scale; lðu; vÞ, cðu; vÞ, and sðu; vÞ
represent three measurements between u and v: luminance, contrast,
and structure, respectively; and α; β, and γ are the corresponding
weights of these three measurements and are supposed to be
positive. The definitions of lðu; vÞ, cðu; vÞ, and sðu; vÞ are, respec-
tively,

lðu; vÞ ¼ 2μuμv þ c1
μ2u þ μ2v þ c1

;

cðu; vÞ ¼ 2σuv þ c2
σ2u þ σ2v þ c2

;

sðu; vÞ ¼ σuv þ c3
σuσv þ c3

; (7)

where μ and σ denote the mean values and the standard deviations,
respectively, and three variables c1; c2, and c3 are used to stabilize
the division, preventing the denominator from falling below a cer-
tain threshold. Based on MS-SSIM in equation 6, we define the
MS-SSIM loss as follows:

LMS-SSIM ¼ 1

N

XN

i¼1

ð1-MS-SSIMðGðȳiÞ; yiÞÞ: (8)

The L1 loss in equation 5 measures the differences between two
seismic images and is calculated by

L1 ¼
1

N

XN

i¼1

kGðȳiÞ − yik1: (9)

In addition, we add the TV loss to enforce spatial smoothness by
avoiding extremely high gradients of the generator during the train-
ing procedure, as defined by

LTV ¼ 1

N

XN

i¼1

ðk∇hGðxiÞk2 þ k∇wGðxiÞk2Þ; (10)

where ∇h and ∇w are the functions used to determine the horizontal
and vertical gradient of GðxÞ, respectively.

Discriminator loss

Following the core idea of GAN, we rely on the discriminator D
for adversarial training G. More concretely, the loss function of D is
used to ensure that D can correctly determine the difference between
real and fake HR data. It judges the actual HR data y to be authentic
and outputs one, whereas the generator’s output y 0 is deemed fake
and outputs zero. For this purpose, we define it as follows (Mao et al.,
2016b):

LDis ¼
1

N

XN

i¼1

ðkDðGðxiÞÞ − 0k2 þ kDðyiÞ − 1k2Þ: (11)

To summarize, the optimization of G follows the minimization of
equation 1, the optimization of F relies on equation 3, and the opti-
mization of D is conducted by minimizing equation 11. Using these
equations, G, F, and D are optimized alternately during the training
process.

Joint random sampling for training data set construction

In most cases, poststack seismic data requiring resolution improve-
ment are a 3D data set. Intuitively, 3D networks (Wu et al., 2019; Liu
et al., 2022b; Saad et al., 2022) would be superior to 2D networks in
capturing 3D seismic features and delivering better results. However,

4 Liu et al.



two apparent difficulties arise when applying 3D networks to weakly
supervised resolution improvement. On the one hand, 3D networks
involve a greater number of network parameters, thus requiring sub-
stantial training data; otherwise, overfitting is likely to occur due to
insufficient training data. Unfortunately, vintage LR data typically
have small data volumes because of old-fashioned exploration tech-
nology, further aggravating this problem. On the other hand, 3D
networks are computationally expensive and often involve days of
training, making hyperparameter tuning very challenging. Therefore,
we use the alternative approach, 2D networks, to operate on 3D data
and perform resolution enhancement.
Processing 3D data with 2D profile-by-profile methods often re-

sults in discontinuities along the profile’s normal direction, which
also occurs with 2D networks. Taking 3D poststack denoising as
an example, if the 2D network is trained on inline profiles, it performs
well on inline profiles but introduces discontinuity artifacts on cross-
line profiles, and vice versa (Liu et al., 2020). This indicates that a
standard 2D training method is insufficient to provide the desired
adaptivity on a global scale. Similarly, we encounter this problem
when improving the resolution of 3D field data with the proposed
2D network. Figure 3a shows the LR seismic profile of a field
3D data set that requires resolution improvement using the proposed
weakly supervised method. First, we train our network with profiles
only along inline directions, which is consistent with the original pro-
file shown in Figure 3a. The testing results are shown in Figure 3b,
which evidently yields a higher resolution with continuous and co-
herent events. Unfortunately, when we examine the testing results
from the other direction, e.g., concerning the crossline profile shown
in Figure 4a, evident discontinuities in events can be observed, as

indicated by the yellow boxes in Figure 4b. These discontinuities,
also characterized by oscillation smearing, deblur the events, making
it more difficult to track horizons and identify faults. It is evident that
this problem is caused by dimension reduction during 2D training, in
which coherency among inline sections is ignored. To leverage this
previously ignored information, we propose a straightforward but ef-
fective training data sampling method, i.e., randomly sampling along
inline and crossline axes. In contrast to the previous single-direction
view of the data set, our method can be regarded as a valuable data
augment, gaining access to the entire data set from multiple perspec-
tives. This data augmentation does not require the same cropping po-
sitions for input and target sections, offering more flexibility than
previous sampling strategies for paired training data (Alaudah
et al., 2019; Hamida et al., 2022). Figures 3c and 4c verify the success
of the proposed method in the resolution improvement. More impor-
tantly, we avoid the previous discontinuities in either crossline or in-
line profiles. Note that all parameters, including the sample number
N, remained the same in the preceding comparison, except for the
sampling method used for generating training data. Please refer to
the “Real data experiment” section for more details regarding data
set information and experimental parameter settings.

EXPERIMENTS AND RESULTS

In this section, we first demonstrate the feasibility of our model
based on unpaired data training using a 2D synthetic data example.
Then, we evaluate the performance of the proposed network on field
data sets to improve the resolution of an LR vintage data set by
a local HR data set. In addition, the validity of our method is

Figure 3. Inline profile comparison of 2D network testing results for different sampling methods. (a) Original LR seismic data. (b) Testing
results when training samples are randomly cropped solely from profiles along the inline axis. (c) Testing results when training samples are
randomly cropped from profiles along inline and crossline axes.

Figure 4. Crossline profile comparison of 2D network testing results for different sampling methods. (a) Original LR seismic data. (b) Testing
results when training samples are randomly cropped solely from profiles along the inline axis. As indicated by the yellow boxes, there is a
disruption in the continuity of events. (c) Testing results when training samples are randomly cropped from profiles along inline and crossline
axes.
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confirmed by comparison with the traditional time-varying spec-
trum whitening method.

Synthetic data experiment

Synthetic data generation

We use the Marmousi2 model (Martin et al., 2006) to conduct
synthetic experiments. The 2D synthetic seismic data are generated
by the convolution of wavelets and reflection coefficients derived
from P-wave velocity and density. Here, we adopt the Ormsby
wavelet (Ormsby, 1961), a band-pass wavelet, to generate seismic
data with different resolutions. The parameters fL1, fL2, fH1, and fH2
represent the low-cut, low-pass, high-pass, and high-cut frequencies
of the Ormsby wavelet, respectively. They are in increasing order
and given here in Hertz.

Training data construction

The purpose of this experiment is to simulate the situation for a
weakly supervised learning approach under the premise of unpaired
LR-HR data. Accordingly, following these procedures, we synthe-
size two types of synthetic data: vintage data from an LR seismic
field and training targets from an HR seismic field. The parameters
of the band-pass wavelet for generating LR data are (fL1, fL2, fH1,
fH2) = (1, 4, 15, 18). For generating HR data, we set the parameters
of the band-pass wavelet to (fL1, fL2, fH1, fH2) = (1, 4, 24, 27). The
resulting data profiles have a size of 3311 × 13601 (depth × dis-
tance). We select the left half of the synthetic LR seismic data as the
input data, as shown in the yellow rectangular box in Figure 5a, and
the right half of the synthetic HR seismic data as the training targets,
as shown in the yellow rectangular box in Figure 5b.

Training details

We train our model with the Adam optimizer (Kingma and Ba,
2014) by setting β1 = 0.5, β2 = 0.999, and ε = 10−8, without weight
decay. Training samples are randomly cropped from the rectangular
regions in the synthetic seismic profiles using uniformly distributed
sampling for simplicity. The four parameters in equation 1 are de-
fined as w1 = 1, w2 = 10, w3 = 5, and w4 = 0.5, respectively. The
network training parameters are set as follows. The patch size is
96 × 96, the initial learning rate is 0.0002 with an exponential decay
rate of 0.5, the decay period is 100 epochs, the batch size is 16, and
the total number of training epochs is 600. During the training, we
randomly select a portion of the training sample pairs (1600 pairs)
from the specified areas instead of using all of them. As the training
data and the label are unpaired, we regenerate new training sample
pairs every 200 epochs, based on our empirical testing, to ensure
training stability and feature diversity. Finally, we feed them to
the network for training in batches.

Evaluation of results

Enhancing high-frequency features while preserving low-fre-
quency information is essential for effectively improving resolution.
To measure the effectiveness of our proposed method on synthetic
data, we assess the results from two perspectives: the profile results
and the multitrace average amplitude spectrum.
We first examine the results in the left half of the synthetic seismic

data, as shown in Figure 6. Our method effectively improves the res-
olution of the synthetic LR data and restores valuable detailed infor-
mation. Overall, the results are as accurate as the HR convolution
model generated by HR wavelets, particularly at strong-energy
events. A detailed comparison of the results outside the training areas

is shown in Figure 7. The areas indicated by the
yellow arrows demonstrate that our method pro-
vides more precise structural information, and the
events are smoother than simulated HR data, illus-
trating better lateral continuity. The stratigraphic
sequence structure has not changed, indicating
the reliability of this technique. The red arrow
areas show that our method also effectively im-
proves the resolution of weak events in synthetic
LR data. These results provide convincing evi-
dence of the benefits offered by the complex
mapping ability of the network.
Then, we observe the results in the right half

area in Figure 8. Our approach significantly
improves seismic resolution even for complex
structures and weak-energy events, exhibiting

Figure 5. Data segments for two training areas: (a) the LR data obtained by the band-
pass wavelet of (1, 4, 15, 18) and (b) the HR data obtained by the band-pass wavelet of
(1, 4, 24, 27). As indicated by the yellow boxes, we regard the left half of the LR data as
source data and the right half of the HR data as target data.

Figure 6. Result comparison for the left half area of the LR synthetic data: (a) original LR data, (b) the HR data obtained by the convolution
model, and (c) the HR data obtained by our method.
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impressive generalization ability. Furthermore, the enlarged results in
Figure 9 show that our method obtains clearer and more continuous
events than the synthetic HR data in the yellow arrow areas. Simi-
larly, in the red arrow areas, our method achieves results close to the
simulated HR data, especially in areas where the event is difficult to
separate. To quantitatively assess the similarity of our method to the
HR convolution model, we use two standard metrics: the Pearson
correlation coefficient (PCC) and the signal-to-noise ratio (S/N).
The obtained PCC is 0.9749 and the output S/N of our method is
12.24 dB, indicating that our approach yields accurate HR results.
Furthermore, we investigate the LR outputs of the reverse generator

F to demonstrate that our network architecture is reasonable and the
cycle structure is conducive to our network. Comparing Figure 10a
and 10b, we observe relatively similar structures, indicating that
the HR results generated by our method can be reverted to the original
LR space. Figure 10c also demonstrates a minor difference between
them. In addition, by examining Figure 11, we can verify that the re-
verse generator of our network can effectively accomplish the opposite
function of the forward generator. Our LR output achieves a PCC
of 0.9823 and an S/N of 13.92 dB compared with the original LR

convolution model, demonstrating the successful mastery of the
mutual distribution transition between the LR and HR data by our
network.
Finally, we analyze the multitrace average amplitude spectrums,

as shown in Figure 12. Our method obtains spectrums close to the
synthetic HR data, regardless of whether the spectrums are derived
from the left, right, or entire areas. The proposed technique effec-
tively expands the bandwidth of the synthetic LR data and recovers
the high-frequency information without damaging the low-fre-
quency useful information. In addition, the reversal outputs of
the HR results obtained by our method are reasonably close to
the amplitude spectrum of the synthetic LR data, which further veri-
fies the reversibility of our method.

Real data experiment

Data set description

The LR and HR data used in this study are two 3D poststack
migration records acquired by dynamite from different work areas

Figure 7. Enlarged result comparison for the left half area of the LR synthetic data: (a) original LR data, (b) the HR data obtained by the
convolution model, and (c) the HR data obtained by our method. As indicated by the yellow arrows, our method can obtain more continuous
events than synthetic HR data. Weak-energy events are also improved, according to the red arrows.

Figure 8. Result comparison for the right half area of the LR synthetic data: (a) original LR data, (b) the HR data obtained by the convolution
model, and (c) the HR data obtained by our method.

Figure 9. Enlarged result comparison for the right half area of the LR synthetic data: (a) original LR data, (b) the HR data obtained by the
convolution model, and (c) the HR data obtained by our method. As indicated by the yellow arrows, our method can obtain clearer structural
information than synthetic HR data. Weak-energy events are improved significantly, according to the red arrows.
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of the Daqing Oilfield, which are approximately 30 km apart. The
LR data have been collected in 1995 with equipment and acquis-
ition parameters typical of that time. There are 401 survey lines in
the work area, and each survey line has 661 receivers. The detailed
parameters are as follows. The total time length is 4 s, the sampling
frequency is 250 Hz, the bin size is 25 m × 50 m, the fold number is
20, and the aspect ratio is 0.32. Even after advanced merging
processing, the resolution remains unsatisfactory due to the limita-
tions of acquisition technology during that period. The HR data
have been collected in 2016 with an HR processing procedure.
There are 401 survey lines in the work area, and each line has
371 sampling points. The time window length is also 4 s with a
sampling frequency of 250 Hz, the same as the LR data. Notably,
the fold number is 240 and the aspect ratio is 0.79, indicating a

wide-azimuth and high-density 3D seismic survey. Accordingly,
the bin size is 10 m × 20 m, smaller than the LR data. In addition
to data acquisition technology, HR processing technology has made
significant progress since 1995, facilitating the availability of HR
seismic data. The data sets are normalized before training to ensure
that the relative reflected energy at different positions remains un-
changed, but their training sizes and areas may be different because
the input data and training targets are not paired.

Training data

The yellow boxes shown in Figure 13 indicate the selected train-
ing area, which covers approximately 64% of the total data set. The
window length is from 800 to 2200 ms in the time direction. The

Figure 10. Reversibility assessment for the left half area of the LR synthetic data: (a) original LR data, (b) LR outcomes obtained by the reverse
generator F, and (c) differences (the red wiggles adhered to the original LR wiggles) between (a) and (b).

Figure 11. Reversibility assessment for the right half area of the LR synthetic data: (a) original LR data, (b) LR outcomes obtained by the
reverse generator F, and (c) differences (the red wiggles adhered to the original LR wiggles) between (a) and (b).

Figure 12. Multitrace average amplitude spectrum analysis for (a) the left half area, (b) the right half area, and (c) the whole area of the
synthetic data.
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input data differ significantly from the learning targets in size and
structure, highlighting the mismatched training samples for weakly
supervised learning. Even though it is highly challenging for con-
ventional methods, the proposed network improves the resolution of
the entire LR data set when trained with these unpaired data.
Figure 14 shows the contrast between the LR input data and the

HR learning targets in profiles, whose positions are indicated by the
blue lines in Figure 13, as well as the corresponding multitrace aver-
age amplitude spectrums. The profiles reveal significant resolution
differences between the LR input data and the HR learning targets,
with the input data having severely limited resolution compared
with the HR learning targets. The multitrace average amplitude
spectrums also demonstrate a substantial mismatch in frequency
distribution between the input data and the learning targets. The
input data have narrow frequency bands and lack high-frequency
energy, whereas the learning targets have relatively wide frequency
bands with prevalent high-frequency energy. The apparent distribu-
tion mismatch between the unpaired training data highlights the
strong transition capability in weakly supervised
learning.

Training details

As described in the previous section, we use
the joint random sampling method to reduce
the discontinuities that naturally arise when using
a 2D network to process 3D data. Training sam-
ple pairs are randomly sampled along the inline
and crossline directions with a size of 96 × 96.
The four parameters in equation 1 are set to be
w1 = 1, w2 = 10, w3 = 5, and w4 = 2, respectively.
The following are the remaining parameters. The
initial learning rate is 0.0002, which then expo-
nentially decays every 100 epochs with a decay
rate of 0.5; the batch size is 16; the number of
training epochs is 800 and each epoch includes
1600 sample pairs; and new training samples are
selected from the training area every 200 epochs.

Results analysis

We evaluate the performance of the proposed
method from four aspects: a crossline profile, an
inline profile, time slices, and multitrace average
amplitude spectrums. To further verify the accu-
racy and effectiveness in improving resolution,
the proposed method is compared with the tradi-
tional time-varying spectrum whitening tech-
nique that is widely implemented in the industry.
We first examine the inline profile results, as

shown in Figure 15. Compared with the original
profile shown in Figure 14a, both methods signifi-
cantly improve seismic data resolution and recover
useful information. In general, our results have a
consistent event structure compared with the tradi-
tional method, verifying the rationality of our
results. Moreover, our method provides higher
accuracy in determining stratigraphic structure re-
lationships due to higher spatial consistency. Spe-
cifically, the yellow arrows in Figure 15 indicate

that the proposed method provides better lateral continuity. A closer
examination of the crossline results in Figure 16 supports these find-
ings. It is challenging for the traditional time-varying spectrum
whitening method to maintain the spatial continuity and energy con-
sistency of the prominent reflection event, as indicated by the yellow
arrows. In contrast, our method produces higher-resolution results
with better lateral continuity. In addition, both methods effectively
preserve the low-frequency useful information of the original seismic
data, as demonstrated by the multitrace average amplitude spectrum in
the bottom right corner, where the blue, black, and red lines represent
the original LR seismic data, the HR results obtained by the traditional
time-varying spectrumwhiteningmethod, and the HR results obtained
by our method, respectively.
Then, we analyze the multitrace average amplitude spectrums of

each profile by gathering them into Figure 17. The traditional and
our methods significantly increase the effective bandwidth and en-
hance the high-frequency information with similar improvement
levels. In addition, our method better fits the trend pattern of the

Figure 13. Training areas: (a) the LR input data and (b) the HR learning targets. The
yellow boxes indicate the selected training area, whereas the blue lines delineate the
areas for visualizing the profile results subsequently.

Figure 14. Example comparison of the inline and crossline profiles between the input
data and the training targets. The multitrace average amplitude spectrum of each profile
is displayed in the bottom right corner. (a) The LR input data at inline 2400, (b) the HR
targets at inline 4100, (c) the LR input data at crossline 1650, and (d) the HR targets at
crossline 1350.
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original data in the low-frequency range, indicat-
ing a higher preservation of useful information.
To further examine the effectiveness of our

method, we display the results on two time slices.
In the time slice at 1750 ms (Figure 18), our
method shows higher resolution and better recov-
ery of events with stronger energy and more de-
tailed structural information. Particularly in the
yellow boxes, the stratigraphic structure is more
accurately depicted with our method, and the
spatial relationship between the strata is more
clearly described by revealing richer details. Fig-
ure 19 shows a comparison of the time slice at
1850 ms. On further analysis of the areas indi-
cated by the yellow and white ellipses, we can
draw a similar conclusion to Figure 18 that
our method recovers credible HR data.
To verify the reliability and fidelity of our pro-

posed method, we generate synthetic seismic data
using acoustic and density logging data from a
well at crossline 1492. Figure 20 shows that the
traditional time-varying spectrum whitening
method and our proposed method produce HR re-
sults that match well with the synthetic data at
peaks and troughs with strong amplitude. How-
ever, our method not only captures waveform
trends and characteristics similar to the synthetic
data but also reveals more details and clearly illus-
trates fractures that are critical for accurate geo-
logic interpretation. Quantitatively, our method
achieves a high level of accuracy with a correla-
tion coefficient of 0.66, outperforming the original
LR data (0.61) and the baseline method (0.58).
This high reliability facilitates the accurate recov-
ery of thin layers and weak reflection amplitudes.

DISCUSSION

Ablation study

To illustrate the advantages of the proposed loss
function for the semisupervised resolution im-
provement, we conduct an ablation study on 2D
synthetic data. The impact of different loss func-
tions is evaluated with PCC and output S/N

Figure 15. Inline profile results obtained by (a) the traditional time-varying spectrum
whitening method and (b) the proposed method (for the raw LR data, see Figure 14a).
The multitrace average amplitude spectrum of each profile is displayed in the bottom
right corner. The yellow arrows indicate that our method offers better spatial consistency
for events.

Figure 16. Crossline profile results obtained by (a) the traditional time-varying spec-
trum whitening method and (b) the proposed method (for the raw LR data, see Fig-
ure 14c). The multitrace average amplitude spectrum of each profile is displayed in
the bottom right corner. Our method produces higher resolution results, as indicated
by the yellow arrows.

Figure 17. Multitrace average amplitude spectrum analysis for (a) the profile of inline
2400 and (b) the profile of crossline 1350.

Figure 18. Comparison of time-slice results at 1750 ms: (a) the LR seismic data, (b) the HR result obtained by the traditional time-varying
spectrum whitening method, and (c) the HR result obtained by our method. The comparison of the yellow boxes indicates that the stratigraphic
structure is more accurately depicted with our method.
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metrics, as shown in Table 1. The results indicate that our proposed
approach, which uses a combination of LGAN, Lcyc, Lidt, and LTV,
outperforms the networks trained without these loss functions. Spe-
cifically, removing LGAN, Lcyc, and LTV leads to a slight decrease in
performance, whereas the omission of Lidt causes a substantial de-
crease in PCC and output S/N. Consequently, the identity loss func-
tion is the most critical component, as it determines the training
direction, whereas the other loss functions further enhance its perfor-
mance in a subsidiary manner. These findings highlight the impor-
tance of using a combination of loss functions to improve the model’s
performance for resolution enhancement tasks. In addition, the last
line of Table 1 indicates that replacing the original L 0

idt with our pro-
posed Lidt is justifiable, as it leads to improved PCC and S/N scores.

Remaining challenge and future work

The proposed network is trained on a novel strategy that uses an
unpaired training data set and presents excellent high-frequency
reconstruction capabilities, even for complex structures and weak-en-
ergy events. This approach assumes that the two data sets have sim-
ilar underground structural features and provides a flexible way to
leverage this prior knowledge for resolution improvement. We also
contribute an improved loss function and sample selection method to
make it applicable to field data. However, obtaining representative
training data remains a challenge. In our field example, we success-
fully use two data sets that were 30 km apart but determining the
maximum distance for applying this method still requires more

Figure 19. Comparison of time-slice results at 1850 ms: (a) the LR seismic data, (b) the HR result obtained by the traditional time-varying
spectrum whitening method, and (c) the HR result obtained by our method. By comparing the yellow and white ellipses, it can be observed that
our method recovers credible HR data.

Figure 20. Comparison of well-to-seismic tie results in crossline 1492: (a) the LR seismic data, (b) the HR result obtained by the traditional
time-varying spectrum whitening method, and (c) the HR result obtained by our method.
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practical experience. For other practical applications, factors such as
the survey type used to acquire the data, subsurface geologic condi-
tions, and seismic source wavelets should be considered when select-
ing appropriate training data. In addition, one limiting factor is that
the proposed method is only applicable when the LR and HR data
sets have similar geologic features and cannot be applied in situations
with entirely different patterns. For instance, if the LR data set con-
tains prevalent strike-slip faults, whereas the HR data set does not, the
output HR results will eliminate these faults as noise, producing unre-
alistic results. In addition, because our method draws inspiration from
image superresolution and focuses mainly on improving high-fre-
quency components, it still has limitations on low-frequency compo-
nents. Accordingly, another critical factor for data selection is that the
LR-HR data set pairs should have similar low cutoff frequencies,
which are crucial pattern features. If the low-cutoff frequency com-
ponents are not matched, the output HR results will shrink or extend
the low-frequency accordingly, potentially resulting in inaccurate
lineups.
Noise analysis is essential for seismic data resolution improve-

ment. We conduct additional experiments on synthetic data with
varying noise levels and include the results in Table 2. The findings
suggest that our method performs well with moderate levels of
noise. However, as is widely recognized, deep learning is vulnerable
and has inherent limitations in its robustness ability, and strong
noise can still have a notable impact, especially for accurately re-
constructing thin-layer structures. Our proposed training strategy
presents a novel but more challenging scenario, further exacerbating
this issue. The strong amplitude and wide-bandwidth noise may
distract our network and cause it to pay more attention to high-
frequency noise components, thereby deviating from the useful in-

formation representing the strata. As a result, applying our method
to prestack data remains challenging.
Nevertheless, our method’s performance on noisy data is accept-

able, given our goal of improving the resolution of poststack migra-
tion data, which typically contains less noise. To address the
resolution improvement under severe noise conditions, one intuitive
approach is to include an extra denoising module that maps the
noisy LR data to a noise-free LR space (Yuan et al., 2018). In ad-
dition, using a pretrained model on a denoising data set or adding
noise to the current training data also helps the model learn to be
more robust to noise.
These challenges require further investigation to refine the pro-

posed approach and expand its applicability. Nevertheless, we be-
lieve our approach has significant potential for broad applications.
Another promising application involves improving the resolution of
deep-layer data by learning from the shallow-layer data of the same
data set. Their same acquisition method, similar low-frequency
range, and similar noise level make them well suited for our pro-
posed approach.

CONCLUSION

This study offers a fresh perspective on seismic resolution im-
provement via CycleGAN in a weakly supervised manner. Because
seismic data from neighboring surveys have highly similar features,
the proposed method uses unpaired local data for training, thus
eliminating the necessity to obtain paired labels. Specifically, the
proposed method learns cycle mappings between two unpaired
LR and HR data sets, which then can be applied to enhance the
resolution of LR seismic data. To achieve this, we carefully design
the loss function in conjunction with the characteristics of seismic
data. Moreover, a joint random sampling approach is introduced to
reduce artifacts when implementing the 2D network to process 3D
data. Experiments on synthetic and real seismic data are carried out
to test the feasibility and effectiveness of the developed method.
Compared with the traditional time-varying spectrum whitening
method, our method recovers more high-frequency information
and has better spatial continuity and consistency. Due to the high
flexibility of weakly supervised learning, our results can be further
boosted by providing more sophisticated HR data.
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