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ABSTRACT

Revealing hidden reservoirs that are severely shielded by
strong background interference (SBI) is critical to subsequent re-
fined interpretation. To enhance the characterization of these res-
ervoirs, current interpretation workflows merge multiple attribute
information, necessitating intensive human expertise. As an alter-
native, we regard SBI suppression as a signal separation problem
and develop a workflow to suppress SBI by cascading a sparse
representation method and deep learning. SBI has coherent mor-
phological characteristics in seismic sections; reservoir seismic
responses, such as channels and karst caves, have a narrow spatial
distribution, exhibiting abrupt morphological characteristics. As
their morphologies differ, we select two 2D sparse representation

dictionaries to identify their individual components. Through the
morphological component analysis (MCA) technique, we can
obtain adequate SBI separation results. However, the MCA
separation is inevitably limited because 2D dictionaries cannot
adequately represent 3D structures, but 3D dictionaries are not
viable due to computing constraints. As an extension, we use
3D deep learning to improve the separation results based on
the 2DMCA results. Specifically, the network is fed with training
samples from a region with better SBI suppression results ob-
tained by the MCAmethod. After learning a direct mapping from
noisy data to SBI, the network can improve the separation results
and remove more SBI than the previous conventional method.
Field data experiments demonstrate that our separation workflow
successfully enhances reservoir structures after removing SBI.

INTRODUCTION

Reservoir prediction plays a significant role in oil field develop-
ment planning because it provides an estimate of the remaining oil
and gas reserves for production forecasts. However, strong reflec-
tion events, often existing in actual seismic profiles, obscure poten-
tial reservoir signatures. Strong reflections are formed by largewave
impedance differences between the upper and lower strata of the
reflection interface. For example, shale underlies thin channel sand
reservoirs (Zhang et al., 2013), oil shale overlies a beach-bar sand-
stone reservoir (Liu et al., 2014), high-velocity hard layers sand-
wich softer coal seams (Zhang et al., 2015), etc. The amplitude
of strong reflection layers is overwhelming in comparison with

nearby target reflections. Accordingly, strong reflection events
shield reservoir responses manifested by weak reflection events. As
a result of this shielding effect, reservoir prediction accuracy is
greatly reduced. Such strong reflections can be identified as strong
background interference (SBI). Therefore, separating SBI and
enhancing weak reflections attract considerable critical attention.
Model-driven studies, which use handcrafted priors to separate

strong-amplitude background interference, represent a growing
field. They fall into five main classes: multiwavelet decomposition
(Zhang et al., 2012; Guan et al., 2016), matching pursuit algorithms
(Liu et al., 2014; Xu et al., 2019; Zhu et al., 2019), empirical mode
decomposition (Wang et al., 2016; Chen et al., 2017a; Jiang et al.,
2020, 2021), phase decomposition (Zhang et al., 2021b), and
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inverse Q filtering (Guo and Wang, 2004). Although these model-
driven methods have achieved remarkable results in SBI elimination,
the following three limitations have not yet been fully addressed.
First, SBI removal quality heavily depends on the consistency
between the adopted prior and real data distribution. In other words,
we can obtain satisfactory results in the areas where the distribution
of seismic data to be processed is consistent with our prior assump-
tions. However, seismic data are inherently nonstationary, which
means that seismic data distribution in certain areas may deviate from
our assumptions, thereby failing to remove SBI effectively. Second,
model-driven approaches rely on appropriate parameter selection to
achieve high-quality SBI separation. It is common in practice to pre-
set fixed parameters for the sake of simplicity. However, considering
the nonstationary characteristics of seismic data, setting a constant
parameter may produce suboptimal separation results in some par-
ticular regions. Moreover, most model-driven methods suffer from
highly variable sensitivity, further aggravating the problem. Third,
the signal decomposition algorithms are computationally intensive,
making it impractical to implement them for 3D SBI removal. In gen-
eral, a 3D volume-based denoising method is superior to correspond-
ing 1D or 2D denoising methods. If we could introduce a 3D SBI
removal method with an acceptable computational cost, it would
be beneficial to further improve the SBI separation performance
in practice.
As a trending field in recent years, data-driven deep learning has

been proposed as the solution to the preceding challenges. To date,
deep learning has been successfully applied to many seismic data
tasks, such as interpolation (Wang et al., 2019; Fang et al., 2021),
denoising (Yu et al., 2019; Saad et al., 2021), velocity estimation
(Park and Sacchi, 2020), and fault segmentation (Wu et al., 2019).
As researchers dig deeper, it becomes more apparent that deep
learning is not omnipotent and infallible. It has its own limitations,
such as the black-box problem (Castelvecchi, 2016), model drift
(Zhang et al., 2020b), and vulnerabilities to adversarial examples
(Yuan et al., 2019). Therefore, recent attention has focused on
the prospect of deploying deep learning algorithms in real-world
scenarios. In other words, it is crucial to investigate how to maxi-
mize the advantages of deep learning in practical applications, while
avoiding the flaws outlined previously. To our understanding, deep
learning comprises two types of prospecting practical applications
at present. The first category is accelerating conventional methods
(Liu and Grana, 2019; Di et al., 2020; Liu et al., 2020b, 2021b;
Wang et al., 2021). The second category pertains to improving con-
ventional methods with deep learning. For example, integrating a
deep learning denoiser with a conventional method, such as the
plug-and-play method, can lead to enhanced interpolation results
(Park et al., 2020; Zhang et al., 2020a).
Training sample selection is another reasonable way to improve a

conventional method with deep learning. As previously discussed, a
conventional method may result in inconsistent processing perfor-
mance across the entire work area. Deep learning directly acquires
prior knowledge from training samples. Accordingly, training a net-
work using all labels generated by a conventional method enables
similar processing performance. Furthermore, by selecting high-
quality labels generated by a conventional method, the network can
gain processing performance and then generalize this improvement
to previously unseen regions. Therefore, training sample selection
can facilitate the network surpassing the conventional method in the
remaining unlabeled regions. For example, to eliminate seismic arc-

like imaging noise, Liu et al. (2020a) develop a fault confidence
metric using the structural gradient tensor to exclude labels contain-
ing this type of noise. After training it with a set of rationally se-
lected training samples, the network outperforms the conventional
method for generating labels in arc-like imaging noise suppression.
It confirms that the data processing capability of the network is
learned from the training samples rather than by merely replicating
the conventional method. This allows us to further refine the con-
ventional method, which is used for producing training labels, by
training a network using selected high-quality training samples.
Inspired by the preceding fact, we propose a novel SBI separation

workflow by integrating a classic signal decomposition method and
deep learning. Morphological component analysis (MCA) is a ver-
satile signal decomposition technique based on sparse representa-
tion, which excels at simultaneously separating multiple waveforms
pertaining to significant geologic targets from observed seismic data
(Starck et al., 2005). Previous studies have proven the effectiveness
of MCA in ground-roll attenuation (Xu et al., 2016; Chen et al.,
2017b), linear noise attenuation (Guo et al., 2021), footprint noise
suppression (Liu et al., 2021a), and so forth. On this foundation, we
select the curvelet transform and the 2D stationary wavelet trans-
form (2D-SWT) as sparse representation dictionaries of SBI and weak
reflections, respectively, according to their waveform differences.
After MCA separation, we can obtain preliminary but acceptable
SBI separation results. Then, we move forward to further improving
these results using deep learning. Specifically, shallow-layer seismic
data, which are slightly shielded by SBI, are handpicked to build a
training data set. The reason is that weak reflections are more evident
in the shallow layer, and the first-step MCA separation can obtain
better results than those in deep layers. Therefore, their features
can be more easily identified by the network. In addition, as weak
reflections and SBI exhibit different profile morphological features,
the MCA separation model mentioned previously is implemented
on 2D vertical sections. Undoubtedly, it loses 3D spatial information.
We introduce a 3D network that can fully exploit the 3D spatial geo-
logic structure of SBI and potential channel sand bodies. After feeding
these selected training samples, the network can further improve the
SBI suppression results. The field data experiment demonstrates that
the proposed workflow is capable of accurately recovering weak-en-
ergy reflections and removing SBI with high accuracy.

THEORY

The proposed workflow for SBI separation is illustrated in detail
in Figure 1. This section first introduces the MCA theory, including
the dictionaries chosen for sparsely representing the SBI and weak
useful reflections. Next, a training sample selection strategy and
network architecture are presented.

Morphological component analysis

Following the sparse decomposition technique (Chen et al.,
2001), Starck et al. (2005) propose the MCA algorithm for the sep-
aration of K components sk ∈ RN×1; k ¼ 1; · · · ; K. Each compo-
nent sk exhibits distinct morphological characteristics and adding
these components together synthesizes the signal:

s ¼ s1þ · · · þsK: (1)

MCA separation is achieved by using several mathematical trans-
forms as overcomplete dictionaries Dk ∈ RN×Lk (typically Lk ≫ N)
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and then combining Dkðk ¼ 1; · · · ; KÞ to produce a combined dic-
tionary D for sparsely representing the original signal. Each diction-
ary Dk can identify a specific morphological component sk of the
signal, but sk and Djðk ≠ jÞ should be mutually incoherent. Con-
cretely speaking, there are two additional technical prerequisites
that must be fulfilled for the successful separation of various com-
ponents.
Prerequisite 1: Any given component sk can be represented by a

proper dictionary Dk in a highly sparse manner:

xoptk ¼ argmin
xk

kxkk0 subject to sk ¼Dkxk for k¼ 1; · · · ;K;

(2)

where xk ∈ RLk denotes the coefficients computed byDk. Similarly,
xoptk represents the sparse solution, i.e., kxoptk k0 < N. The l0 norm
counts the number of nonzero elements in a vector.
Prerequisite 2: Any other dictionary Dj results in a nonsparse

representation of sk (j ≠ k):

∀ fj; kg ∈ f1; · · · ; Kg; xoptjk ¼ argmin
xjk

kxjkk0

subject to sk ¼ Djxjkðj ≠ kÞ; (3)

where the l0 norm of the coefficients kxoptjk k0 > kxoptk k0, requiring
that the dictionary Dj cannot represent sk in a sparse manner.
Following the preceding prerequisites, MCA aims to determine

the sparsest representations of the signal s with respect to the aug-
mented dictionary composed of fDkgk¼1; · · · ;K (Elad et al., 2005). As
a result, we need to address the following problem:

fxopt1 ; · · · ; xoptK g ¼ argmin
fx1; · · · ;xKg

XK
k¼1

kxkk0

subject to s ¼
XK
k¼1

Dkxk: (4)

Solving the optimization task in equation 4 obtains the representation
coefficients fxkgk¼1; · · · ;K , resulting in a successful separation of vari-
ous components fskgk¼1; · · · ;K . Unfortunately, as a nonconvex and

non-deterministic polynomial (NP)-hard optimization problem, there
is an exponential increase in computational complexity when the
number of columns in the augmented dictionary grows. To make it
tractable, the l0-norm constraint is replaced with an l1-norm con-
straint. Together with a relaxation of the equality constraint, the model
becomes an unconstrained convex optimization problem (Starck et al.,
2005):

fxopt1 ; · · · ; xoptK g ¼ argmin
fx1; · · · ;xKg

����s −
XK
k¼1

Dkxk

����
2

2

þ λ
XK
k¼1

kxkk1;

(5)

where λ indicates the Lagrange multiplier for adjusting a ratio between
misfit and constraint terms. The block coordinate relaxation method
(Sardy et al., 2000) is an effective way to solve equation 5 by decou-
pling it into K subproblems, each of which equals a typical l2 − l1
sparse optimization form:

xk ¼ argmin
xk

����s − Dkxk −
X
j≠k

Djxj

����
2

2

þ λkxkk1;

for k ¼ 1; · · · ; K: (6)

Among those subproblems, K − 1 coefficient terms corresponding to
distinct Djðj ≠ kÞ are assumed fixed, and one — the kth coefficient
term — remains in question. Each subproblem can be solved by the
soft-thresholding algorithm (Donoho and Johnstone, 1994) in an iter-
ative manner:

xlþ1
k ¼ Sλ

�
D†

k

�
s −

X
j≠k

Djxlj

��
; (7)

where D†

k indicates Moore-Penrose pseudoinverse ofDk. Similarly, xl

represents the solution at the lth iteration. The soft-thresholding oper-
ator Sλ with a threshold λ can be written as

SλðaÞ ¼
�
a − λ signðaÞ; jaj ≥ λ

0; others
: (8)

Upon completion of the iteration, the separated components can be
determined by

Figure 1. The proposed workflow for SBI separation.
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sk ¼ Dkx
opt
k : (9)

To adapt MCA to SBI separation, we assume that the original seismic
data are a linear superposition of SBI called sb, the weak-energy target
reflection called sr, and random noise called sn (Wang et al., 2011).
Accordingly, we can formulate inline or crossline vertical sections in
3D seismic data as

s ¼ sb þ sr þ sn: (10)

Incorporating a noise component sn is helpful to increase the appli-
cability of our model, making it not only effective for seismic data
disturbed by random noise but also for actual data containing other
waveform components that slightly violate model assumptions.

Figure 2a presents a raw original seismic section contaminated by
SBI. In consonance with the MCA theory, sb and sr should exhibit
noticeable morphological differences. Fortunately, the waveform re-
sponses of sb are stable, thus producing continuous and coherent
events. On the contrary, weak-energy target reflections map to the
waveform response of laterally inhomogeneous geologic bodies
(LGB), which manifests as abrupt features in the seismic section.
This apparent difference allows us to potentially distinguish be-
tween these two components.
It is important to note that MCA makes a distinction between the

various components of the original signal based on the incoherence
degree across the dictionaries. Furthermore, as the representation
coefficients become more sparse, the MCA separation effect be-
comes more pronounced. To this end, choosing appropriate diction-
aries, which have unique atomic characteristics to provide a highly
sparse characterization of each component, is crucial to the success-
ful application of MCA. Ideally, once we find suitable dictionaries,
the SBI separation could be accomplished by solving

fxoptb ;xoptr g¼argmin
fxb;xrg

ks−Dbxb−Drxrk22þλðkxbk1þkxrk1Þ;

(11)

where xb and xr are the sparse representation coefficients under
the overcomplete dictionaries Db and Dr with regard to sb and sr,
respectively.

2D-SWT for sparse representation of LGB responses

Target reservoirs, such as channel sand-body sediment, exhibit
LGB seismic responses, which can be generally characterized as
an abrupt waveform component. As shown by the black ellipses
in Figure 2a, it presents a point distribution structure, thus leading
to a noticeable point singularity feature. This observation is corrobo-
rated by the fact that conventional interpretations of channel sand-
body sediments also rely on amplitude anomalies in seismic profiles.
Wavelet transforms are well known for capturing objects with

point singularities. A typical example is the 2D-SWT, which pos-
sesses multiscale and redundant properties. Prior studies about
acquisition footprints (Cvetkovic et al., 2007) and ground-roll attenu-
ation (Wang et al., 2012) have convincingly shown that 2D-SWT is
helpful for seismic component decomposition. On the one hand, 2D-
SWToffers better translation-invariance properties as opposed to 2D
discrete wavelet transforms. On the other hand, Gibbs phenomena are
substantially reduced by 2D-SWT. Due to these factors, 2D-SWT is
chosen as the dictionary for capturing abrupt point features. More
details on 2D-SWT are presented in Appendix A.
The 2D-SWT atoms with three different scales are displayed in

Figure 3a. Each scale consists of three directions: horizontal, vertical,
and diagonal. Awaveform dictionary can sparsely represent a signal
component if the atoms in it accurately match the structural properties
of the signal component. It can be apparently observed that these
multiscale and isotropic atoms precisely match the abrupt feature
of weak reflections. Consequently, we use 2D-SWT to extract the
point features of weak-energy target reflections because it has supe-
rior sparse representation capabilities for point singularity targets.

Curvelet transform for sparse representation of SBI

SBI, also known as stable sedimentary stratum, generates coherent
waveform responses. As illustrated by the yellow box in Figure 2a,

Figure 2. Comparative analysis of different morphological charac-
teristics. (a) Raw seismic section. As indicated by the black ellipses,
the channel structure in the shallow layer is apparent. However, the
deep layer data are covered by the strong reflection layer as outlined
by the yellow box, making it challenging to clearly visualize the
weak-energy LGB waveform responses. (b) A time-slice example
(50 ms) from the shallow data with obvious channel structures. Ac-
cordingly, we select the shallow layer data for training the network.
(c) A deep time-slice example (100 ms). Due to the influences on
deep layer data from SBI, weak-energy LGB waveform responses
are almost invisible.
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SBI presents a smooth curve distribution structure in the seismic sec-
tion, showing evident curved singularity with a wide spatial distribu-
tion. In this regard, we need to select a dictionary with the ability to
depict curved singularities effectively. Most wavelet transforms are
inadequate at representing curved geometry regularity because their
atoms are solely generated by isotropic dilation. This isotropic dila-
tion enables these atoms to be well localized, but only dispersed
across multiple locations and scales. To express anisotropic regularity
in multivariate functions, e.g., edges in images, the basic elements of
the dictionary need correspondingly to be distributed in multiple di-
rections. In this manner, the optimal representation coefficients are
sparse because multidirectional atoms can more accurately character-
ize continuously changing curve features.
Currently, several multidimensional transformations, such as the

directional wavelet transform, the curvelet transform, and the con-
tourlet transform, have been developed to handle this problem. Spe-
cifically, the curvelet transform introduced by Candès and Donoho
(2000) is a popular technique for multiscale geometric analysis. For
most of the 2D functions that exhibit a smooth pattern except for
discontinuities along smooth curves, the curvelet transform can pro-
vide a nearly optimal nonadaptive sparse representation (Ma and
Plonka, 2010). Recall that SBI is characterized by curved features
in seismic sections. As a result, we choose the curvelet transform as
the sparse representation dictionary Db. More details on the curvelet
transform are provided in Appendix B.
It can be clearly observed from Figure 3b that curvelet atoms pos-

sess favorable geometric properties of multiscale, anisotropy, and
multidirectionality. Equivalently, this observation indicates that the
curvelet transform is efficient in capturing curve-like singularities.
Note that, because the profile morphological features of SBI and

LGB responses differ noticeably, the proposed MCA separation algo-
rithm is performed on 2D seismic sections. Moreover, direct imple-
mentation of 3D MCA is not feasible due to the computationally
intensive nature of 3D dictionaries (see “Discussion” section). To al-
low access to 3D seismic data, we first remove the SBI component
section by section along the inline direction. In this manner, a great
part of SBI can be attenuated; however, a minimal amount of signal
leakage may occur. Then, the fidelity is improved by reapplying the
MCA algorithm along the crossline direction to the earlier removed
SBI, thereby allowing us to retrieve the leaked signals. Summing up
the extracted abrupt components from these two separation steps pro-
duces the final weak-energy target reflections, as illustrated in Figure 4.

Data preparation and network training

During the training phase, neural networks directly acquire prior
knowledge about how to separate SBI from training samples, which
has a crucial impact on the separation performance of the network.
In other words, it brings additional benefits when we construct
training samples through elaborate processing procedures or artifi-
cially select some satisfied training samples according to certain
criteria. The network can automatically incorporate the prior knowl-
edge behind such procedures or criteria. It is especially advanta-
geous when these procedures are time-consuming and labor-
intensive or when mathematical formulas cannot explicitly express
these selection criteria. In these situations, deep learning is superior
to traditional methods in either processing efficiency or flexibility.
Taking advantage of this specific property, we prepare high-qual-

ity training samples from two perspectives. On the one hand, we

obtain satisfactory SBI removal results by a sophisticated compres-
sive sensing algorithm, i.e., MCA. However, the preceding separa-
tion model is a pseudo-3D processing strategy due to computational
limitations. Specifically, it considers that channel sand bodies dis-
rupt reflection continuity in seismic sections, but ignores the fact
that their identification is easier in time or depth slices of 3D seismic
data sets. To incorporate more spatial information and enhance sep-
aration precision, we directly cut the original 3D seismic data set
and the corresponding SBI extracted by MCA into small 3D cubes,
and then pair them together to construct training samples. On the
other hand, we observe that the severity levels shielded by SBI are
varied. For instance, weak-energy abrupt waveform responses are
evident in shallow-layer seismic sections, as indicated by the black
ellipses in Figure 2a. Such clear visibility of channel structures also
is confirmed in the time slice of 50 ms, as presented in Figure 2b.
Continuing to examine the deep-layer reflections as shown by the
yellow box in Figure 2a, the sandstone reservoirs underlie sand-
shale. Unfortunately, owing to the strong reflection interface of
sand-shale, it is extremely challenging to accurately visualize the
weak-energy LGB waveform responses. A time slice of 100 ms pro-
vides an example of this situation, as shown in Figure 2c.
For efficient and accurate separation of LGB waveform response

features, we select shallow-layer seismic data with clearly visible
LGB waveform responses as training data. Subsequently, the well-
trained network is used to identify LGB waveform responses in deep
layers, where the LGB waveform responses are fully submerged in
SBI. A significant advantage of this sample construction strategy lies
in obtaining high-quality labels because conventional methods can
produce superior results with pronounced LGB waveform responses
in the shallow-layer data. With these training data, the network can
more easily understand how to accurately distinguish between SBI
with coherent features and weak-energy targets with abrupt features.
Moreover, adjacent regions have a similar underground structure, as
does the stratigraphic structure causing SBI. Therefore, although the
amplitude varies, the coherent features for characterizing SBI are
nearly identical across different time slices. In other words, neighbor-
ing time slices do not fluctuate dramatically, supporting the validity
of our sample construction strategy.
Having finished the data preparation, we feed these training sam-

ples into a 3D network for training. The input of the network is the
original 3D seismic cube s, which consists of SBI sb, target reflec-

Figure 3. Comparison of 2D-SWT atoms and curvelet transform
atoms. (a) The 2D-SWT atoms. The 2D-SWT atoms are isotropic
and can capture point features; thus, they are selected as the dic-
tionary to sparsely represent the weak-energy target reflections.
(b) Curvelet transform atoms. Curvelet transform atoms are iso-
tropic and can capture curve singularity features, and thus they
are selected as the dictionary to sparsely represent SBI.
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tions sr, and random noise sn. The network output targets, either ŝb
or ŝr, are the corresponding labels constructed by MCA. Motivated
by the success of denoising convolutional neural network (DnCNN)
(Zhang et al., 2017) and similar SBI features, we adopt a residual
learning strategy RðsÞ ≈ ŝb to train the network, mapping the input
raw seismic data to coherent waveform responses. Correspondingly,
the network can provide the estimated LGB waveform responses by
ŝr ¼ s −RðsÞ. We omit sn here because it is merged into sb. Using
the averaged mean square to measure the error between network
outputs and labels, we can formulate the loss function as

lðΘÞ ¼ 1

2N

XN
i¼1

kRðsi;ΘÞ − ðsi − ŝirÞk2F; (12)

where N indicates the total amount of cubes used for training. A
locally optimal solution to trainable parameters Θ is determined

by the classic back-propagation algorithm (Rumelhart et al.,
1986) after iterative training.
Figure 5 illustrates the architecture of the proposed 3D convolu-

tional neural network (CNN) for separating SBI in detail. Three
stages constitute the proposed network regression model. It begins
with one convolutional layer. With reference to VGGNet (Simon-
yan and Zisserman, 2015), we follow their experimental parameter
setting and assign the convolution kernel size to 3 × 3 × 3. In ad-
dition, we eliminate all pooling layers to ensure that the network
output is the same shape as the input. The middle stage primarily
comprises 15 convolutional layers, each with batch normalization
(BN) layer between them. In general, BN improves the performance
of CNNs on two fronts: reducing covariance shift and increasing
training convergence (Ioffe and Szegedy, 2015). Afterward, one
convolutional layer constitutes the final stage.
A standard convolution calculation shrinks voxels near the boun-

dary. As such, we should select a padding strategy among the existing
padding strategies that can address this issue. According to our test-
ing, a basic zero padding satisfies our demands and does not cause
additional artifacts in the results. It is obvious that our network ar-
chitecture and training process are straightforward and concise. With
such a simple network, it is easier to verify that our training sample
selection strategy is effective, even if introducing more regularization
terms would enhance our results even further.

EXAMPLES

Synthetic data example

The first step is to examine the effectiveness of the aforemen-
tioned MCA-based SBI separation method on 2D synthetic data.
Figure 6a illustrates the 2D velocity model used to generate the syn-
thetic data. It can be observed that a 100 m wide and 10 m thick
channel is embedded at the interface between the fourth and fifth
strata. Then, this velocity model is sampled along the horizontal and
vertical dimensions at intervals of 2.5 m. A Ricker wavelet with a
dominant frequency of 60 Hz is used in this example. Figure 6b
depicts the migrated profile obtained through wave equation-based
prestack depth migration. As can be seen from the synthetic seismic
profile, the reflection waveform associated with channel sedimen-

Figure 4. A flowchart illustrating the MCA process for SBI sepa-
ration of 3D seismic data.

Figure 5. The network architecture of the proposed 3D CNN for SBI separation. The number of convolution channels is denoted by c. This
figure is slightly revised from Liu et al. (2019).
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tation appears as a bright spot, exhibiting a narrow distribution with
abrupt point structures. Regrettably, it substantially merges with the
reflection waveform of stable sedimentary strata, making separation
difficult.
Data are thereafter separated using the proposed MCA algorithm.

We obtain the abrupt waveform component section in Figure 6c and
the coherent waveform component section in Figure 6d, respec-
tively. Comparing the separated results with the
original data profile, it can be seen that the reflec-
tion waveform of channel sedimentation is
completely stripped from SBI. In addition, the co-
herent waveform component virtually does not
contain any residual reflection waveform structure
associated with the channels, indicating the high
fidelity of our method. Figure 7 shows the results
of the 500th trace, which is indicated by the green
line in Figure 6. The original seismic trace is con-
taminated by the SBI, shielding the LGB re-
sponses near 0.35 km as shown by the red box
in Figure 7a. Examining the separated results
shown in Figure 7b, we can find that high-fidelity
weak-energy signals are successfully recovered,
and SBI distortion is effectively reduced, as indi-
cated by the green arrows. In conclusion, the pro-
posed method succeeds in removing SBI from the
synthetic data.

Field data example

In this section, we evaluate the proposed work-
flow on a 3D seismic data set from eastern China.
The raw data quality is relatively high because it
is collected in winter and there are few interfer-
ences. Accordingly, the signal-to-noise ratio (S/
N) of the migrated data is satisfactorily high if
SBI is temporarily overlooked. After extracting the time slices near
the target layer, we obtain the data set that has 256 time sample
points with a sampling interval of 1 ms. Crossline direction and in-
line direction have 401 and 681 samples, respectively, with a 20 m
spatial interval. A complex fluvial depositional system exists in this
work area, with obvious marker beds in the middle. Because chan-
nels are viewed as potential reservoirs, channel interpretation has
been regarded as one of the most challenging tasks in the interpre-
tation of data from this region. Figure 8a illustrates a crossline sec-
tion flattened along the shielding layer. Due to the strong covering
effect of the marker beds, it is quite difficult to clearly identify
weak-energy sedimentary characteristics. Apparently, interpreta-
tions and attribute analyses are difficult to perform on the original
seismic profile. In the first stage, MCA is used to remove SBI. Fig-
ure 8b and 8c, respectively, depicts the abrupt waveform component
and coherent waveform component separated from the preceding
original section. Comparing Figure 8b with Figure 8a, it is evident
that the reflection waveform structure associated with channel sand-
body deposition in the original profile has been effectively sepa-
rated, particularly the areas indicated by the solid green line box
that was severely distorted by SBI. MCA also makes channel boun-
daries clear so that we can identify obvious channel structures from
the areas marked by the green box with a dashed line. Moreover, as
illustrated in Figure 8c, the interface of SBI can be clearly detected

after separation, facilitating understanding of the sedimentary
process.
As a further convincing demonstration of the proposedMCA sep-

aration, we compare results on the 200 ms time slice, which is one
of the most seriously affected time slices by SBI. Figure 9a shows
the relative geologic time slice of the original data, and we can gen-
erally discern strong-energy fault structures. Due to the strong

Figure 6. SBI suppression on synthetic data based on MCA. (a) A 2D velocity model
with an embedded channel. (b) Prestack depth migration seismic profile. The green line
denotes the position of a single-trace comparison in the following figure. (c) Recovered
LGB waveform component by MCA. (d) Separated SBI waveform component by MCA.

Figure 7. Comparison of the SBI separation results with the 500th
trace in the synthetic profile. (a) Synthetic data contaminated by
SBI. The red box indicates the location of the channel structure.
(b) Recovered LGB waveform component by MCA. By observing
the green arrows, we can conclude that SBI is effectively sup-
pressed. (c) Separated SBI waveform component by MCA.

Strong background interference removal 7



shielding effect of the marker beds, many weak-energy LGB re-
sponses are covered and therefore difficult to observe. From the
time slice of the abrupt waveform component obtained by the
MCA method in Figure 9b, it can be seen that fluvial deposit struc-
tures, distributed in a scattered pattern along the crossline section,
are largely stripped from SBI. As well as being able to visualize
some partially observed channel sandstone in the original data more
clearly, sedimentary structural features that were not visible in the
raw data also are recovered as indicated by the green rectangle.
More importantly, channel sandstone bodies cannot be observed
in the removed SBI in Figure 9c, demonstrating the high fidelity
of this method. Figure 10a and 10b displays the attribute slices de-
rived by the semblance-based coherence algorithm (Marfurt et al.,
1998), which provides additional evidence that the fluvial sandstone
bodies are more apparent after MCA separation than in the original
slice. The original data can merely highlight the position of fault
structures. After the MCA separation, some detailed fluvial sedi-
mentary structures buried in the background of stable sedimentation
strata can be viewed more clearly.
In the second stage, we train the network on shallow layer data

and investigate its improvement on SBI separation, especially for
deeper-layer data. Specifically, the training data set is constructed
with time intervals ranging from 0 to 80 ms based on the results

from the previous stage. Only one parameter, the learning rate,
should be prudently predefined for the network training; we set
it to 10−4 after several tests. A more detailed description of the ex-
periment setting can be found in Table 1. Figure 8d and 8e shows
the second-stage section results, and we can easily observe that they
have significant improvement compared with the results of the for-
mer stage. The weak-energy reflections contain more LGB response
waveform features, especially the 150–220 ms regions that SBI se-
verely distorts, as marked by the green rectangle. Specifically, it is
evident from the yellow circles that channel sandstone deposits are
more prominent, which is consistent with the subsequent time slice
results. Moreover, the fault structures indicated by the black circles
are more apparent than those in the MCA results. Looking at the
time slice results of the network in Figure 9d and 9e, we can draw
the same conclusion. Although MCA has effectively removed most
SBI, some SBI remains visible because the SBI energy of this time
slice is extremely strong, as indicated by the yellow arrows. Obvi-
ously, 2D dictionaries are inadequate for completely capturing 3D
underground structures. In coincidence with the section results,
the network further suppresses SBI in the time slice, allowing more
channel sand bodies to emerge, particularly around the yellow ar-
rows. Moreover, the network alleviates the seismic imaging anoma-
lies caused by fault boundaries compared with the first-stage MCA

results. These findings indicate that well-chosen
training samples contribute considerably to im-
proving SBI separation results. In addition, adding
knowledge of 3D data structures also is one of the
reasons that the network achieves a performance
improvement.
For a more intuitive analysis, we compare the

coherence attribute between the MCA results and
network results. The MCA parameters are fixed
for simplicity, and therefore a small amount of
SBI residues remain, which slightly obscure
the channel structure in Figure 10b. The coher-
ency attribute of the network results is shown in
Figure 10c. The previous graph shows that our
network further achieves remarkable SBI sup-
pression, and more prominent channel sandstone
deposits can be identified on this time slice.
Moreover, the overall fault structures remain un-
changed after SBI is eliminated, demonstrating
the reliability of our network. Clearly, our net-
work generalizes the satisfactory results obtained
by MCA in shallow layers to deep layers due to
the similarity of subsurface structures. This also
verifies that our sample selection is reasonable
because the network has acquired the desired
skills to extract SBI features after learning the
selective training samples. In addition, the net-
work can automatically gain knowledge regard-
ing 3D data structures, which in turn results in
substantial performance improvements.
We now pay attention to the inline results pre-

sented in Figure 11. The original section shown in
Figure 11a, located at 4.74 km, has complex wave-
form features due to SBI distortions, making it
difficult to clearly characterize the channel charac-
teristics of some weak energies. Figure 11b shows

Figure 8. Crossline section results of SBI separation at 6.40 km. (a) A raw seismic
crossline section flattened along the shielding layer, which is polluted by SBI. The
dashed black line indicates the position for subsequent time slice comparison. The green
box with a dashed line marks an apparent channel position. (b) The recovered LGB
waveform component by MCA. The channel boundary in spatial and temporal direc-
tions is clearer than in the original section, as indicated by the green box with a dashed
line. Moreover, as indicated by the solid green line box, channel structures are much
clearer, but this section still contains a few SBI residues. (c) The separated SBI wave-
form component by MCA. (d) The recovered LGB waveform component by the net-
work. By comparing the solid green line box, we observe that the network recovers more
LGB waveform responses than the first-stage MCA, especially in the areas marked by
the yellow circles. Furthermore, the black circles indicate more prominent fault struc-
tures than the MCA results. (e) The separated SBI waveform component by the network.
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the section results with MCA separation, and we
find that the strong-amplitude SBI has been sub-
stantially reduced. This allows the relative ampli-
tude of reservoir seismic response to describe its
actual development more accurately. Furthermore,
as shown in Figure 11c, the MCA algorithm does
not influence the stratum succession, proving its
reliability. Unfortunately, the MCA results contain
a few SBI residues because the fluvial sandstone
energy is too weak to meet our prerequisite 1.
Turning now to the network results in Figure 11d,
it is apparent that the LGBwaveform responses are
more apparent than the MCA results, as weak re-
flections are considerably enhanced. Although
solely trained on shallow layer data, our network
shows satisfactory generalization capabilities to
process adjacent seismic data. Moreover, the fact
that our results in Figure 11e are free of the edge
artifacts at patch borders confirms the validity of
our network.
In summary, our workflow successfully re-

moves SBI and unveils channel structures. In ad-
dition, with the abrupt waveform components
separated by our workflow, we can qualitatively
analyze and characterize the fluvial facies sedi-
mentary system. Moreover, the extracted LGB
reflection waveforms of channel sand bodies
can be used to quantitatively analyze associated
seismic properties, such as reservoir thickness,
physical properties, and oil and gas properties,
so as to facilitate reservoir modeling, etc.

DISCUSSION

2D dictionaries versus 3D dictionaries

The morphological difference in seismic sec-
tions between SBI (coherent morphological fea-
tures) and LGB waveform responses (abrupt
morphological features) is the key to the successful
implementation of our MCA method. In seismic
sections, as channels become broader in time sli-
ces, their abrupt features also become wider in
space correspondingly. If we use a relatively small
window, the wide channel region also may exhibit
coherent features, which violates the MCA pre-
requisite requiring different morphological fea-
tures. In this regard, the curvelet transform and
2D-SWT are unable to distinguish them effec-
tively, leading to unsatisfactory separation results.
A viable solution is to select a relatively big win-
dow where channels still have different morpho-
logical features from SBI. However, a larger
window will result in a significant increase in com-
putational costs. After several trial experiments, we
select a compromise solution and set the window
size to 512 × 512 to fully exploit their morphologi-
cal feature differences.
The 3D multiscale transforms, such as the

3D curvelet transform (Ying et al., 2005) and

Figure 9. The results of SBI separation on the 200 ms time slice. (a) The raw time slice.
Many finer channel structures are not clearly visible due to the shielding effect of SBI.
Two dashed black lines denote the position for section comparison. (b) The recovered
LGBwaveform component byMCA. The channel structures are considerably improved,
as shown by the green box. (c) The separated SBI waveform component by MCA.
(d) The recovered LGB waveform component by the network. The yellow arrows in-
dicate the network further reveals more channel sand bodies. (e) The separated SBI
waveform component by the network.

Figure 10. A comparison between the coherence attribute calculated on (a) raw seismic
data, (b) MCA results, and (c) the network results. The red boxes show that the network
reveals more prominent channel sandstone deposits. The fact that the main fault struc-
tures remain unchanged indicates that the network achieves reliable SBI suppression.
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3D-SWT (Chen et al., 2012), have more flexible
directional selectivity than 2D transforms.
Ideally, 3D dictionaries would achieve better
SBI separation with minimal signal damage
compared with 2D dictionaries. Nevertheless,
as 2D data transition to 3D data, we still need
to take into account the change in morphological
features. When we use a 3D window, SBI is char-
acterized by curved surface features, whereas
LGB waveform responses exhibit curved line fea-
tures. Both of these features can be sparsely rep-
resented by the 3D curvelet transform. To comply
with the MCA framework, it is necessary to filter
out partial curvelet coefficients to discriminate be-
tween curved surface and curved line features.
However, selecting these regions in the curvelet
domain is labor-intensive and reliant upon exper-
tise. Moreover, similar to the 2D window, a rela-
tively large 3D window should be used.
Unfortunately, as thewindow size grows, the com-
putational time and storage costs of 3D diction-
aries increase drastically. The solver of MCA
requires repeated iterations, which exacerbates
the computational problem of 3D dictionaries.
Based on the preceding limitations of 3D diction-
aries, we finally select 2D dictionaries. Even so,
we envision routinely using the 3D curvelet trans-
form in the near future, allowing us to improve our
results further.

Which is better for learning using the
network: SBI or useful reflections?

The network is used to learn a nonlinear map-
ping from the original data to target separation
labels in a supervised manner. Selecting a suit-
able separation target with relatively consistent
features can facilitate the network learning proc-
ess. We train the network in shallow-layer areas
with relatively low background noise. On the one
hand, the channel structure is relatively obvious,
satisfying the MCA prerequisites. Therefore,
MCA provides high-quality training samples in
this area. More importantly, the geologic condi-
tions do not change significantly within a small
time window. Accordingly, there is no obvious
feature variation in adjacent stable sedimentation
strata, and the network is easy to capture the SBI
features. In addition, the original seismic data
have been flattened to decrease their spatial fluc-
tuations and increase the similarity. In contrast,
channel deposits have varying signatures, which
are quite distinct from different time slices. For
example, the field data have a meandering river
system in the shallow layer, whereas the deep
layer develops braided rivers. Therefore, using
the network to learn a mapping to LGB wave-
form responses, i.e.,RðsÞ ≈ sr, is more challeng-
ing. Figure 12 shows the results of the mapping
to channels, and it is apparent that there is chan-

Table 1. Summary of experimental parameters for deep learning method.

Parameter
type Description Value

Network Convolution kernels
(time × crossline × inline

× input channels × output channels)

First layer 3 × 3 × 3 × 1 × 64
Last layer 3 × 3 × 3 × 64 × 1

Other layers 3 × 3 × 3 × 64 × 64

Training Volume size
(time × crossline × inline)

80 × 360 × 640

Patch size (time × crossline × inline) 40 × 40 × 40

Patch overlapping
(time × crossline × inline)

20% × 20% × 20%

Total patches 15,000

Batch size 6

Epoch 40

Run time (four GPUs) 18.5 h

Testing Volume size
(time × crossline × inline)

256 × 401 × 681

Patch size (time × crossline × inline) 180 × 180 × 180

Patch overlapping
(time × crossline × inline)

44.44% × 44.44% × 44.44%

Total patches 48

Run time (one GPU) 168 s

Figure 11. Inline section results of SBI separation at 4.74 km. (a) A raw seismic inline
section contaminated by SBI. The dashed black line indicates the position for the previous
time-slice comparison. Black circles mark fault positions. (b) The recovered LGB wave-
form component by MCA. Channel structures are much clearer, but the green boxes in-
dicate that a few waveform responses of stable sedimentation can still be observed. (c) The
separated SBI waveform component by MCA. (d) The recovered LGB waveform com-
ponent by the network. The green boxes indicate that the network suppresses higher levels
of SBI and recovers more refined LGB waveform responses than MCA, especially in the
yellow circles. (e) The separated SBI waveform component by the network.
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nel leakage due to insufficient learning of the varying channel fea-
tures. As a result, we decide to learn a mapping to extract SBI using
the network rather than extracting the channel structures.

Can deep learning outperform traditional methods
used for constructing labels?

The denoising ability for supervised deep learning is learned
from training samples. Therefore, it comes naturally that the labels
limit the network denoising performance. Although the training
data are constructed by the traditional method, we believe that deep
learning has the potential to exceed the labels due to the following
reasons.
First, most conventional denoising methods, including the MCA

method used in this paper, denoise the whole 3D seismic data set
with 2D or 3D sliding windows. In general, the denoising process of
different patches is independent. As we all know, seismic data in the
same work area have similarities in useful signals and noise distri-
bution. Therefore, these conventional methods are characterized by
local filtering methods, which cannot fully exploit the self-similar-
ity across seismic patches. On the contrary, the CNN-based denois-
ing method is somewhat similar to a nonlocal denoising method. Its
loss function minimizes the average errors between network outputs
and the labels. Although CNNs are locally perceived in a single
patch, they share network parameters during the entire training
process. As a result, the network learns many repetitive features
in the training process and benefits from the self-similarity of seis-
mic data. Moreover, we use 3D convolutional kernels, which can
better explore the 3D spatial structure relationship of seismic data
than conventional 2D methods. Intuitively, 3D DnCNN can dis-
criminate useful signals and noises from a global perspective,
thereby eliminating noise more effectively.
Second, considering the complexity of seismic data, different

patches vary in reflection structure and noise energy. Accordingly,
even the same conventional method has varying denoising capabil-
ities for different patches. It is desirable to modify the parameters of
conventional methods accordingly to adapt to these structural and
energy changes. However, practical processing typically uses the
same parameters for an entire seismic data set to simplify the pro-
cedure. This aggravates variations in the denoising effect across dif-
ferent patches. We select relatively high S/N patches to build our
training samples, in which conventional denoising methods are
more effective. With a higher quality of training samples, the net-
work can identify the useful signal more accurately and extend the
satisfactory denoising performance of the conventional methods
from selected samples to the entire work area. Consequently, train-
ing sample selection manually provides additional a priori knowl-
edge, which improves denoising performance.
Third, the achievement of a successful denoising effect depends

on a well-suited regularization method. Similar to the commonly
used sparse and low-rank regularization, the network architecture
itself is an implicit regularization method (Ulyanov et al., 2018).
The network weights serve as a parameterization of the network
output, which aims to produce smooth and continuous results.
By exploiting this network constraint, unsupervised deep learning
methods have exceeded traditional methods in certain denoising
tasks (Saad et al., 2021). Because the network can produce reliable
results even without training labels, it is reasonable to expect that
the proper use of training samples could exceed the performance of
the traditional approach.

Finally, the rational use of well-trained networks improves process-
ing results. For example, natural images and seismic data possess dif-
ferent characteristics. Nevertheless, a network trained on natural
images can serve seismic interpolation (Zhang et al., 2020a). This
method is effective because the network has been inserted into an in-
verse problem framework, which leverages the impressive capabilities
of the existing deep learning denoiser. In a broader sense, our proposed
two-stage method can be regarded as the following inverse problem:

fxoptb ;xoptr g¼ argmin
fxb;xrg

ks−Dbxb−Drxrk22þ λðkxbk1þkxrk1Þ;

subject to Dbxb ¼Rðs;ΘÞ; (13)

which plugs the network into an inverse problem framework. We can
reformulate equation 13 as an unconstrained optimization problem:

fxoptb ; xoptr g ¼ argmin
fxb;xrg

ks − Dbxb − Drxrk22

þ λðkxbk1 þ kxrk1Þ þ λϕΦðDbxbÞ; (14)

which can be solved under the plug-and-play algorithm (Zhang et al.,
2021a). Here, Φð•Þ is an implicit regularizer whose related subpro-
blem will be solved by the well-trained CNN denoiserRðsi;ΘÞ. The
inverse problem framework provides flexibility for the implementa-
tion of networks so that they can be applied to improve conventional
methods for various situations.
Based on the preceding analysis, deep learning is theoretically

able to improve the conventional method. The results of the field
data example in the manuscript also prove that the network has re-
vealed more LGB response waveform features. Therefore, we report
that the network has improved the conventional method.
As a further verification that the network can outperform the

conventional method, we conduct a straightforward experiment.
Figure 13a shows an original time slice from a field data set in eastern
China, which contains 330 inline samples with 20 m intervals, 1000
crossline samples with 10 m intervals, and 126 time samples with

Figure 12. Results of using the network to map the LGB waveform
responses. (a) The recovered LGB waveform component on the
200 ms time slice. (b) The separated SBI waveform component.
Some channel structure leakage can be observed.
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2 ms intervals. Similar to the training process in the previous field
data example, we choose a relatively high S/N region for training,
as indicated by the black rectangle. The network is tested directly
on the original data rather than the MCA results. Figure 13d shows
the recovered LGB waveform component by the network, and it can
be observed that SBI has been effectively removed. Compared with
Figure 13b obtained by MCA, channel sand-body contours in the
network results are more consistent and complete. In addition, the
network reveals more subtle sand-body responses. By comparing
the separated SBI component in Figure 13c and 13e, we can find
that SBI removed by the network has a greater continuity and regu-
larity. Moreover, the 3D network improves the criss-cross artifacts
generated by a 2D section-by-section operation with MCA.

CONCLUSION

We propose a two-stage SBI separation method. First, we suppress
SBI using the MCA theory with appropriate overcomplete diction-
aries. SBI has a coherent waveform response, whereas weak-energy
target reflections exhibit LGBwaveform responses. In this regard, the
curvelet transform, which is a multiscale and multidirectional trans-

formation, is adopted as a dictionary for extracting
the SBI component. The 2D-SWT is suited to an-
alyzing signals that contain discontinuities or
sharp spikes, serving as a dictionary to identify
the weak-energy abrupt component. With the
block coordinate relaxation method, we can effec-
tively suppress SBI as demonstrated by the syn-
thetic data. Then, the MCA results serve as a
basis for training sample construction. To improve
the MCA results further by fully exploiting 3D
spatial information, we train a 3D network to
extract SBI with a rational selection of training
samples. Specifically, shallow-layer data with no-
ticeable LGB features are selected for training.
One field data set demonstrates that our network
recovers more channel details based on the accept-
able results of MCA. These findings provide
insight into the potential for enhancing a conven-
tional method with deep learning.
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APPENDIX A

2D-SWT WAVELET TRANSFORM

The definition of 2D-SWT is given by a tensor product of the
1D-SWT scaling function φðtÞ and the wavelet function ψðtÞ:

φðx; yÞ ¼ φðxÞφðyÞ;
ψHðx; yÞ ¼ φðxÞψðyÞ;
ψVðx; yÞ ¼ ψðxÞφðyÞ;
ψDðx; yÞ ¼ ψðxÞψðyÞ; (A-1)

where φðx; yÞ denotes a 2D scaling function. Three oriented wave-
lets, ψHðx; yÞ, ψVðx; yÞ, and ψDðx; yÞ, stand for horizontal, vertical,
and diagonal directions, respectively. The Symmlet wavelet is
adopted as the wavelet basis function with a vanishing moment
of four. Subsequently, the à trous algorithm (Shensa, 1992) is used
to construct wavelet filter banksH and G for extracting information
from a 2D signal fðx; yÞ:

Figure 13. Results of 240 ms time slice from second field data set. (a) The raw time
slice. The black rectangle indicates the training region for the network. (b) The recov-
ered LGB waveform component by MCA. (c) The separated SBI waveform component
by MCA. (d) The recovered LGB waveform component by the network. More LGB
waveform responses are revealed compared with the MCA method. (e) The separated
SBI waveform component by the network. The network reduces the criss-cross artifacts
caused by MCA.
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X
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X
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X
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X
y

Hj½x − 2u�Gj½y − 2v�Aj½x; y�;
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jþ1½u; v� ¼

X
x

X
y

Gj½x − 2u�Hj½y − 2v�Aj½x; y�;

DD
jþ1½u; v� ¼

X
x

X
y

Gj½x − 2u�Gj½y − 2v�Aj½x; y�; (A-2)

where Aj stands for the approximation coefficients at scale j. Hori-
zontal, vertical, and diagonal detail coefficients are denoted by DH

j ,
DV

j , and DD
j , respectively. Actually, the size of these coefficients is

identical to that of the original signal fðx; yÞ. By inserting 2j − 1

zeros among each coefficient of H and G, we can generate the jth
scale decomposition filter banks Hj and Gj, respectively. Once
MCA separation is complete, the extracted signal component can
be reconstructed using the inverse 2D-SWT with the preceding co-
efficients:
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X3
i¼0

�X
u

X
v
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X
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X
v

~Hj½x−2u−i� ~Gj½y−2v−i�DH
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þ
X
u

X
v

~Gj½x−2u−i� ~Hj½y−2v−i�DV
jþ1½u;v�

þ
X
u

X
v

~Gj½x−2u−i� ~Gj½y−2v−i�DD
jþ1½u;v�

�
; (A-3)

where ~H and ~G refer to synthesis filter banks.

APPENDIX B

CURVELET TRANSFORM

Suppose that ξ ¼ ðξ1; ξ2ÞT represents a location variable in the
frequency domain. Then, the polar coordinates in the frequency do-
main can be calculated by r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ ξ22

p
and ω ¼ arctanðξ1=ξ2Þ.

The Fourier transform of the mother curvelet ϕj;0;0ðxÞ at scale
2−j is limited in a trapezoid by

ϕ̂j;0;0ðr;ωÞ :¼ 2−3j=4Wð2−jrÞVNj
ðωÞ; j ∈ N0; (B-1)

where Nj ¼ 4 · 2½j=2�. Here, x ¼ ðx1; x2ÞT denotes a location vari-
able in the spatial domain. Window functions W and VN need to
have compact support and satisfy the following admissibility con-
dition (Candès and Donoho, 2005; Candès et al., 2006):

X∞
j¼−∞

jWð2jrÞj2 ¼ 1 for r ∈ ð3=4;3=2Þ; (B-2)

XN−1

l¼0

V2
Nðω −

2πl
N

Þ ¼ 1 for all ω ∈ ½0;2πÞ; (B-3)

where N is an arbitrary positive integer and represents the number
of wedges in a circular ring. Please refer to Ma and Plonka (2010)
for details on how to construct W and V explicitly.
Curvelets at the scale 2−j are obtained by dilating, rotating, and

shifting the mother curvelet:

ϕj;k;lðxÞ ≔ ϕj;0;0ðSTθj;lðx − bj;lk ÞÞ; j; l ∈ Z; k ∈ Z2; (B-4)

where Sθ is the rotation matrix Sθ ¼ ½ 1 0

− tan θ 1
� used to change

the orientation of ϕj;0;0 by θ degrees. Here, T is the transpose op-

eration, and we have S−1θ ¼ STθ ¼ S−θ. The term bj;lk ≔ S−Tθj;l ðk12−j;
k22−bj=2cÞ ¼ S−Tθj;lkj signifies a translation parameter that modifies

the spatial position of ϕj;0;0. Correspondingly, a curvelet coefficient
is computed by the inner product:

Cϕfðj; k; lÞ ¼ hf;ϕj;k;li ¼
Z
R2

fðxÞϕj;k;lðxÞdx

¼
Z
R2

f̂ðξÞϕ̂j;k;lðξÞdξ

¼
Z
R2

f̂ðξÞϕ̂j;0;0ðSθj;lξÞeihb
j;l
k ;ξidξ:

(B-5)
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