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Efficient Tensor Completion Methods for 5-D
Seismic Data Reconstruction: Low-Rank Tensor

Train and Tensor Ring
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Abstract— Five-dimensional seismic reconstruction is receiving
increasing attention and can be viewed as a tensor completion
problem, which involves reconstructing a low-rank tensor from
a partially observed tensor. Tensor train (TT) decomposition and
tensor ring (TR) decomposition are two powerful tensor networks
for solving this problem. However, updating core tensors leads to
high computational costs in practical applications. We propose
two efficient methods to exploit low TT rank and low TR rank
structures by theoretically establishing the relationship between
tensor ranks and matrix unfoldings, respectively. Specifically,
the former uses a well-balanced matricization scheme, and the
latter uses a tensor circular unfolding. Furthermore, we use the
randomized parallel matrix factorization (PMF) to accelerate the
solution of these problems. Both synthetic and real data experi-
ments demonstrate that the proposed algorithm can also achieve
remarkable reconstruction performance; in the meantime, the
computational cost is significantly reduced.

Index Terms— Low-rank, matrix factorization (MF), seismic
data reconstruction, tensor completion, tensor ring (TR), tensor
train (TT).

I. INTRODUCTION

DUE to certain obstacles in the seismic acquisition
process, such as irregular surface conditions and equip-

ment limitations, seismic data are often sampled irregularly
along spatial coordinates. The missing traces in seismic
records negatively affect subsequent processing, imaging, and
interpretation involving multichannel deconvolution [1], veloc-
ity analysis [2], full-waveform inversion [3], simultaneous-
source separation [4], and fault detection [5]. Consequently,
seismic data reconstruction is an ongoing and vital problem,
which has attracted considerable attention from academia and
industry in the past several decades.

A number of techniques have been developed to recon-
struct seismic data. Prediction filters are the first category
to achieve effective reconstruction results [6]–[8]. By tak-
ing advantage of the predictability of linear events in the

Manuscript received January 27, 2022; revised April 22, 2022; accepted
May 24, 2022. Date of publication May 30, 2022; date of current version
June 14, 2022. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021YFA0716904 and
in part by the National Natural Science Foundation of China under Grant
41974131 and Grant 41774135. The work of Dawei Liu was supported by
the China Scholarship Council. (Corresponding author: Dawei Liu.)

Dawei Liu and Wenchao Chen are with the School of Infor-
mation and Communications Engineering, Xi’an Jiaotong University,
Xi’an 710049, China (e-mail: liudawei2015@stu.xjtu.edu.cn; wencchen@
xjtu.edu.cn).

Mauricio D. Sacchi is with the Department of Physics, University of Alberta,
Edmonton, AB T6G 2E1, Canada (e-mail: msacchi@ualberta.ca).

Digital Object Identifier 10.1109/TGRS.2022.3179275

frequency-space domain, aliased high-frequency data can be
interpolated by filters derived from nonaliased low-frequency
data. Therefore, antialiasing reconstruction is a significant
benefit of these methods. Unfortunately, the requirement
that seismic observations should be equally sampled limits
the practical applicability of this technique. Moreover, they
operate in small windows where one can assume that data
are composed of a few dips. The second category com-
prises transform-based methods, which play a pivotal role
in addressing the issue of recovering missing traces. The
Fourier transform with simplicity constraints, such as band-
limited wavenumber-domain regularization [9]–[11] and a
sparsity-promoting regularization of spectral amplitudes [12]–
[16], is widely used by industry. This transform is particularly
useful in 5-D seismic volume reconstruction [17]–[19]. The
Radon transform [20]–[22], the wavelet transform [23], the
shearlet transform [24], and the curvelet transform [25]–
[27] are also used to interpolate unknown traces. Data-driven
techniques are the third category of reconstruction methods,
which aims to better fit the data and preserve the subtle fea-
tures. Dictionary learning methods, involving the K-singular
value decomposition [28], [29] and the data-driven tight frame
method [30], can learn the features directly from the input
data in a data-driven manner, thus becoming more adaptive
than the aforementioned fixed-basis transform. Nevertheless,
the high computational complexity and extreme parameter
sensitivity render it unaffordable when dealing with high-
dimensional problems. Recent advances in deep learning make
it a powerful tool to extract features through data-driven
training [31], [32], which is therefore introduced to seismic
data interpolation. Although they have achieved promising
results, the following issues still need to be further addressed.
Supervised deep learning [33]–[35] acquires the prior knowl-
edge by learning the training dataset, which is a thorny
issue for real data. Unsupervised deep learning [36]–[38] can
avoid the preparation of training datasets, but it needs much
more testing time, especially for large-scale datasets since the
network usually needs to be retrained for each input. 5-D
pre-stack data are highly complicated, making unsupervised
learning more challenging. In addition, even though these
methods can easily access the GPU, they still cannot burden
the computational costs beyond 3-D applications. In other
words, they are inadequate to leverage the comprehen-
sive high-dimensional relationships inherent in 5-D seismic
data.
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An alternative to constraining the reconstruction problem
is the assumption that complete data are low-rank and an
increase in missing traces and noise results in a higher
rank [39], [40]. There are two basic approaches currently
being adopted in research into rank-reduction-based meth-
ods: matrix-based and tensor-based approaches. The former
first rearranges multidimensional seismic temporal-frequency
slices into multilevel block Hankel/Toeplitz matrices or texture
matrices and then applies a rank reduction algorithm to recover
the data [41]–[44]. The latter regards multichannel seismic
data as multilinear arrays or tensors and directly operates on
the tensor via dimensionality reduction techniques, such as the
high-order SVD [45], Tucker decomposition [46], and tensor
SVD [47]. Gao et al. [48] adopt the parallel matrix factoriza-
tion (PMF) algorithm [49] to reconstruct a low-rank tensor
structure from undersampled seismic data. This technique
performs matrix factorizations to different tensor unfoldings,
thus dramatically decreasing the computational complexity
by avoiding the computation of SVD. Furthermore, parallel
square matrix factorization (PSMF) is proposed by adopting
an elaborate unfolding procedure to enhance the reconstruction
performance and quality [50]. These methods preserve the
seismic waveforms better since all physical dimensions of
seismic data are taken into consideration, demonstrating the
inherent potential of tensor algebra for the development of
new reconstruction techniques.

More recently, tensor-network-based tensor decomposi-
tions have gained growing popularity and shown remark-
able promise in dealing with higher order, especially beyond
third-order, tensors [51]–[53]. Successful applications include
hyperspectral image super-resolution [54] and denoising [55],
especially tensor completion [56], [57]. As one of the most
representative among them, tensor train (TT) decomposi-
tion [58] has been intensively investigated recently in numer-
ous tasks due to its high data compression ability and com-
putational efficiency [59]–[61]. As a generalization of TT
decomposition, tensor ring (TR) decomposition breaks down a
tensor as several cyclically contracted third-order tensors [62].
Besides the dominant properties of TT, TR has enhanced
compressibility and flexible cores that are circularly shiftable,
thus showing promising potential for seismic reconstruction.
In general, SVD [58], alternating least-squares method [63],
and the gradient descent algorithm [64] are used to identify
latent core tensors of TT and TR decompositions for exploit-
ing the low-rank structure. However, despite the existence
of numerous optimization algorithms, explicit TT and TR
decompositions are still intractable for large-scale applications
due to the high computational cost. Note that the above
assumptions underlying tensor completion are that TT and
TR core tensors are low-rank, regardless of whether they
are explicitly expressed. Therefore, we exploit the low-rank
structure in an implicit way by minimizing the TT rank or
TR rank. In other words, parallel low-rank matrix factoriza-
tion is performed to different tensor unfoldings, substantially
reducing the computational cost in estimating missing entries.

In this article, we propose two efficient tensor completion
methods based on TT rank and TR rank minimization. These
methods lead to a new type of algorithm for seismic data

reconstruction. TT rank and TR rank have a remarkable
capacity for characterizing the correlations between different
modes in higher order tensors. To achieve it, TT rank and TR
rank each applies a new balanced unfolding scheme to the
tensor, respectively. Then, with PMF, low TT rank completion
and low TR rank completion are accomplished in an efficient
manner. Meanwhile, a randomized algorithm, sketching, is fur-
ther applied to accelerate the proposed method. Both synthetic
and field experiments are conducted to demonstrate that the
proposed algorithm can significantly accelerate the 5-D seis-
mic reconstruction process and achieve outstanding results.
The main contributions of this work can be summarized as
follows.

1) We propose a low-rank 5-D seismic data reconstruction
method based on PMF via TT (PMF-TT) rank minimiza-
tion. To the best of our knowledge, this is the first time
TT is applied to seismic data processing tasks.

2) As the TR rank is an extension of the TT rank, PMF via
TR (PMF-TR) rank minimization is also studied, asso-
ciating with a well-balanced unfolding scheme. Further-
more, due to the symmetry of circular unfolding, we find
that only half of the PMF-TR unfoldings can produce
similar results. For distinguishing it from the original
PMF-TR, this new version is named PMF-TRH, which
requires lower computational resources than PMF-TR.

3) A randomized strategy for accelerating the aforemen-
tioned methods is introduced, which can significantly
reduce the computation time. As far as we know, the
study presented in this article is the first investigation to
accelerate PMF-based reconstruction.

The remainder of the article is organized as follows.
In Section II, we first describe the tensor basics and nota-
tions used throughout this article. Then, the connections of
TT/TR ranks between the tensor decomposition and the tensor
unfoldings are introduced. Section III proposes two categories
of 5-D seismic data reconstruction methods, and a random-
ized algorithm is used to accelerate the proposed methods.
The results of the reconstruction experiments on synthetic
and field seismic data are presented in Section IV, verifying
that the proposed method offers superior performance and is
computationally efficient. Finally, the conclusion is presented
in Section V.

II. NOTATIONS AND PRELIMINARIES

A. Notations

In this article, we adopt the notations described in [65].
Scalars (e.g., x, X ∈ R) are denoted by standard letters.
A vector, also known as a first-order tensor, is inscribed in
a boldface lowercase letter, e.g., x ∈ R

I . Boldface capital
letters denote matrices, e.g., X ∈ R

I×J . Tensors of order
N ≥ 3 with size I1 × I2 × · · · × IN are indicated by calli-
graphic letters, e.g., X ∈ R

I1×I2×···×IN . An element of a tensor
X ∈ R

I1×I2×···×IN is denoted by X (i1, i2, . . . , iN ) or xi1i2...iN ,
where (i1, i2, . . . , iN ) is the index. The inner product of two
tensors X , Y with the same size R

I1×I2×···×IN is defined as
�X ,Y� = ∑

i1

∑
i2

· · · ∑iN
xi1i2...iN yi1i2...iN . Furthermore, the

Frobenius norm of X is defined by �X�F = (�X ,X �)1/2.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on June 23,2022 at 03:10:51 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: EFFICIENT TENSOR COMPLETION METHODS FOR 5-D SEISMIC DATA RECONSTRUCTION 5916317

Fig. 1. Illustration of different tensor unfolding schemes using a fourth-order tensor X . The mode-n canonical matricization is used for PMF via TT rank
minimization. The mode-{n, l} unfolding is adopted in PMF via TR rank minimization.

Assembling the entries of a tensor into a matrix is called
the tensor unfolding or matricization, and there are several
varieties as shown in Fig. 1. The mode-n unfolding of ten-
sor X ∈ R

I1×I2×···×IN is a common practice, denoted by
X(n) ∈ R

In×I1···In−1 In+1 ···IN . An alternative mode-n unfolding
of tensor X [62] is denoted by X<n> ∈ R

In×In+1 ···IN I1 ···In−1 ,
which is often used in TR operations. The mode-n canon-
ical matricization of X is also frequently used, defined by
X[n] ∈ R

(
∏n

j=1 I j )×(
∏N

j=n+1 I j ). The mode-{n, l} unfolding of X ,
which is a circular unfolding, is characterized by X{n,l} ∈
R

(
∏n

j=n−l+1 I j )×(
∏n−l

j=n+1 I j ). In addition, unfolding X into almost
square matrices is used in PSMF, which is expressed by X�n� =
reshapen[X ]. Matrix folding, or tensorization, is the inverse
operation of unfolding in which matrices are converted into
higher order tensors. Take mode-n unfolding as an example,
the corresponding mode-n folding is denoted by fold(n) such
that fold(n)(X(n)) = X . For any pair of folding and unfolding,
we have foldn(unfoldn(X )) = X .

B. Tensor Train Rank

A previous study of PMF [48] has investigated the rela-
tionships between the Tucker rank and the mode-n tensor
unfolding, i.e., rankTucker(X ) = [rank(X(1)), . . . , rank(X(N))],
and the Tucker rank minimization approach has been suc-
cessfully applied to tensor completion. As parameters in TT
format presentation is much smaller than that in Tucker rep-
resentations [66], minimizing the TT rank should allow us to
handle more complicated tensor completion situations. Here,
we introduce the TT rank which depends on TT decomposition
and is a generalization of the Tucker rank.

Fig. 2. Illustration of tensor decomposition with tensor diagrams. (a) TT
decomposition, where R0 = RN = 1. (b) TR decomposition.

TT decomposition is to decompose a tensor into a series
of tensor cores, as shown in Fig. 2(a). Each tensor core is a
three-way tensor. Specifically, the minimal TT decomposition
of a tensor X ∈ R

I1×I2×···×IN is stated in the following form:
X =	 G(1),G(2), . . . ,G(N) 
 (1)

where G(1),G(2), . . . ,G(N) refers to a sequence of three-way
tensor cores of size 1 × I1 × R1, R1 × I2 × R2, . . . , RN−1 ×
IN ×1, respectively. 	 · 
 denotes multilinear products of the
above cores. The sequence {R1, R2, . . . , RN−1, 1}, denoted as
rankTT(X ), is the so-called TT rank which imposes limits on
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the size of each TT core. The elementwise relationship of TT
decomposition and tensor X can be written as the following
index form:

X (i1, i2, . . . , iN ) = G(1)
i1

× G(2)
i2

× · · · × G(N)
iN

(2)

where G(n)
in

= G(n)(:, in, :) ∈ R
Rn−1×Rn denotes the inth slice of

G(n). Naturally, we can obtain the TT rank after minimal TT
decomposition. However, obtaining the TT cores of minimal
TT decomposition is often computationally intensive. There-
fore, finding an efficient way to characterize the TT rank is
essential.

An earlier study [51] has theoretically revealed the connec-
tion between the mode-n canonical matricization of X and TT
cores by the following equation:

X[n] = G�n
[n] G>n

(1) (3)

where G�n ∈ R
I1×···×In×Rn and G>n ∈ R

Rn×In+1×···×IN are
the partial contracted products. Accordingly, the rank of the
mode-n canonical matricization and TT rank satisfies

Rank
(
X[n]

) ≤ min
{

Rank
(

G�n
[n]

)
, Rank

(
G>n

(1)

)}
≤ Rn . (4)

More specifically, the rank of X[n] is the lower bound of
Rn . In addition, a seminal study [67] demonstrates that
Rank(X[n]) = Rn holds true for a minimal TT decomposi-
tion, where n = 1, . . . , N − 1. Consequently, Rank(X[n]) is
frequently used to represent the TT rank when solving TT
rank minimization problems.

C. Tensor Ring Rank

In the TT format, there are two matrices in the first and
last positions, producing large middle cores and small border
factors. This limitation leads to unbalanced unfolding and
negatively impacts its representational ability and flexibility,
especially for low-order tensors such as seismic data. As a
more general decomposition technique, TR decomposition
represents the tensor X by circular multilinear products
over a sequence of three-way latent core tensors {G(n)}N

n=1,
as depicted in Fig. 2(b). In contrast to TT cores, G(1) and G(N)

in TR cores have sizes of R0 × I1 × R1 and RN−1 × IN × RN ,
respectively, where R0 = RN . The elements of X under TR
decomposition can be expressed as

X (i1, i2, . . . , iN ) = Tr

{
N∏

n=1

G(n)
in

}
(5)

where Tr(·) stands for the matrix trace operation. Similar to
TT rank, the sequence {R1, R2, . . . , RN−1, RN }, denoted as
rankTT(X ), is TR rank.

According to the following equation proposed in [62]:

X<n> = G(n)
(2)

(
G(�=n)

<2>

)T
(6)

the TR rank is less than or equal to the correspond-
ing core tensor rank since the inequality holds for all

n = 1, . . . , N as follows:
Rank(X<n>) ≤ min

{
Rank

(
G(n)

(2)

)
, Rank

(
G(�=n)

<n>

)}
≤ Rank

(
G(n)

(2)

)
≤ Rn, (7)

where G( �=n) ∈ R
Rn+1×∏N

j=1, j �=n I j ×Rn is a subchain tensor pro-
duced by the contracted products of all core tensors except
the nth one. Apparently, the low-rank constraint on G(n) can
be substituted by Rank(X<n>), which is a common practice to
solve TR rank minimization problems. However, this unfold-
ing scheme still results in “long strip” matrices, which are not
sufficiently balanced.

Motivated by the fact that PSMF outperforms PMF due to
a balanced tensor unfolding [50], we use a circular unfolding
X{n,l} to represent the TR rank. Contrary to X<n> which
conducts tensor unfolding along a single mode, X{n,l} unfolds
X along l modes {n − l + 1, . . . , n − 1, n}, resulting in more
balanced factor matrices. Typically, l is set to be (N/2)�
to generate well-balanced matrices. Similarly, this circular
unfolding can maintain the low-rank property of X by the
inequality [68] rank(X{n,l}) ≤ Rn−l Rn , establishing connec-
tions straightforwardly toward the TR rank. Therefore, X{n,l}
is adopted in this article to capture the low TR rank structure
hidden in seismic data.

III. THEORY

This section first revisits the conventional formulation of
seismic reconstruction, known as PMF. Based on PMF, we pro-
pose two types of novel approaches via TT rank and TR rank
minimization optimization. Finally, a fast algorithm is used to
accelerate the proposed methods.

A. Seismic Reconstruction Based on Parallel Matrix
Factorization Algorithm

The midpoint-offset frequency-space domain is widely used
for prestack seismic reconstruction, where the fully sampled
seismic data have a low-rank structure. In this scenario,
the seismic reconstruction problem can be represented as a
low-rank tensor completion. Specifically, a noisy and incom-
plete 5-D seismic dataset is denoted by Dobs(ω, x, y, hx , hy),
where xandy represent the spatial coordinates of the inline
and cross-line midpoints, respectively, and hx andhy indicate
the inline and cross-line offsets, respectively. We introduce
a fourth-order tensor Dobs as a representation of the binned
seismic volume at a specific temporal frequency ω. The
missing entries of Dobs are substituted with zeros. The
elementwise representation is d obs

i1i2i3i4
, where binning indices

i1, i2, i3, and i4 correspond to the spatial coordinates x, y, hx ,
and hy , respectively. While the notation has been streamlined
by dropping the dependency on ω, it is worth noting that
subsequent analysis is still performed for all frequencies within
the range ω ∈ [ωmin, ωmax].

Assume that the complete data acquired from an ideal
survey are a low-rank tensor Z , the mathematical relationship
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that exists between Z and the observed data Dobs can be
formulated as follows:

P ◦ Z = Dobs (8)

where “◦” represents the Hadamard (elementwise) product and
P indicates a sampling operator in which every entry complies

pi1i2i4i3 =
{

0 if di1i2i3i4 is a missing entry

1 if di1i2i3i4 is an observed entry.
(9)

The problem of recovering the missing entries of Dobs can be
addressed via the well-known rank minimization algorithm

min
Z

rank(Z) s.t. P ◦ Z = Dobs. (10)

To recover the missing entries of Z, the rank of Z should
be kept as low as feasible to capture the low-rank structure.
Alternatively, the unconstrained form can be expressed as

min
Z

rank(Z) + μ

2

∥∥P ◦ Z − Dobs
∥∥2

F
(11)

where μ is a trade-off parameter. Note that the tensor rank
is not unique and there are several definitions to describe the
tensor rank, including the Tucker rank, TT rank, and TR rank.
Nonetheless, solving (11) using any of the above definitions
suffers from intensive computational cost. As a result, it is
essential to substitute a tractable surrogate for the rank term.
In this manner, the tensor completion task can be further
converted to solve

min
Z

�(Z) + μ

2

∥∥P ◦ Z − Dobs
∥∥2

F
(12)

where �(Z) represents a generalized low-rank constraint
on Z .

An effective way to solve this tough problem in (12) is
performing the matrix factorization on the unfoldings of �(Z)

unfoldn(Z) = XnYn (13)

where unfoldn(Z) ∈ R
Sn×Tn has a predefined rank Rn , Xn ∈

R
Sn×Rn , and Yn ∈ R

Rn×Tn . By inserting (13), the problem
in (12) is transformed into the following Frobenius norm
minimization problem:

min
X,Y,Z

1

2

L∑
n=1

∥∥ XnYn −unfoldn(Z)
∥∥2

F
+ μ

2

∥∥P ◦ Z − Dobs
∥∥2

F

(14)

where L is the total number of unfolding matrices. X =
(X1, . . . , XL ) and Y = (Y1, . . . , YL ). In the PMF algo-
rithm [48], Tucker rank is adopted, and thus (14) can be
rewritten as

min
X,Y,Z

1

2

N∑
n=1

∥∥ XnYn − Z(n)

∥∥2
F + μ

2

∥∥P ◦ Z − Dobs
∥∥2

F . (15)

B. Seismic Reconstruction by TT Rank Optimization

The Tucker rank basically captures the correlation between
one mode-k and the others. Fortunately, TT rank takes the
correlation between the first n modes of D and the rest of
last N − n modes of D into account, thereby providing an
more expressional manner to capture the global correlations
of D. As discussed in II-B, the TT rank can also be applied
to define the tensor rank as a sum of the rank of mode-
n canonical matricization of X . Accordingly, the proposed
PMF-TT simply replaces the Tucker rank with TT rank, and
the formulation in (11) is changed to the following TT rank
optimization problem:

min
Z

L∑
n=1

rank
(
Z[n]

) + μ

2

∥∥P ◦ Z − Dobs
∥∥2

F
(16)

where L = N − 1 because this unfolding approach generates
N − 1 matrices. Similar to (14), the following equation is
equivalent to (16):

min
X,Y,Z

1

2

N−1∑
n=1

∥∥ XnYn − Z[n]

∥∥2
F

+ μ

2

∥∥P ◦ Z − Dobs
∥∥2

F
(17)

where Xn ∈ R

∏n
j=1 I j ×Rn and Yn ∈ R

Rn×∏N
j=n+1 I j . Notably, (17)

can be split into convex subproblems with respect to each
block of the variables Xn , Yn , and Z , while the other two
are fixed. Following PMF in [48], we use the block coordi-
nate descent method to iteratively update different blocks of
variables as follows.

1) Update of X and Y: The minimization subproblem with
reference to X and Y can be calculated by

min
X

1

2

N−1∑
n=1

∥∥XnYk
n − Zk

[n]

∥∥2
F

(18a)

min
Y

1

2

N−1∑
n=1

∥∥Xk+1
n Yn − Zk

[n]

∥∥2
F
. (18b)

For each Xn and Yn (n = 1, . . . , N − 1), the optimization
problem (18) can be solved by applying the following formula:

Xk+1
n = Zk

[n]

(
Yk

n

)H
(

Yk
n

(
Yk

n

)H
)†

(19a)

Yk+1
n =

((
Xk+1

n

)H
Xk+1

n

)†(
Xk+1

n

)H
Zk

[n] (19b)

where † symbolizes the Moore–Penrose pseudoinverse.
As shown in [48], (19b) can be simplified as follows:

Xk+1
n = Zk

[n]

(
Yk

n

)H
, n = 1, . . . , N − 1. (20)

It is rational to omit the computation of the Moore–Penrose
pseudoinverse Yk

n(Y
k
n)

H because updating Zk+1 in (22) merely
needs the product of Xk+1

n Yk+1
n and the same results will be

produced regardless of whether (19a) or (20) is used.
2) Update of Z: Computing tensor Z is related to address-

ing the following optimization subproblem:

min
Z

1

2

N−1∑
n=1

∥∥ Xk+1
n Yk+1

n − Z[n]

∥∥2
F

+ μ

2

∥∥P ◦ Z − Dobs
∥∥2

F
.

(21)
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By taking the partial derivative of X in (21), the optimal
closed-form solution of this subproblem can be obtained by

Zk+1 = (I − αP) ◦ C + αDobs (22)

with the parameter α specified by

α = μ

N − 1 + μ
(23)

where the fourth-order tensor C is determined by

C = 1

N − 1

N−1∑
n=1

fold[n]
(
Xk+1

n Yk+1
n

)
. (24)

The pseudocode of the proposed PMF-TT is summarized in
Algorithm 1.

Algorithm 1 Low-Rank Tensor Completion by PMF-TT

1: Inputs: Dobs, P , μ, R1, . . . , RN−1

2: Initializations: Y0, Z0, k = 0
3: while the given stopping criterion is not satisfied do
4: for n = 1, . . . , N − 1 do
5: Unfolding Zk to get Zk[n]
6: Xk+1

n = Zk[n](Yk
n)

H

7: Yk+1
n = ((Xk+1

n )H Xk+1
n )†(Xk+1

n )H Zk[n]
8: end for
9: C = 1

N−1

∑N−1
n=1 fold[n](Xk+1

n Yk+1
n )

10: Zk+1 = (I − αP) ◦ C + αDobs

11: set k = k + 1
12: end while
13: Output: Zk+1

C. Seismic Reconstruction by TR Rank Optimization

As discussed in Section II-C, the mode-1 and mode-(N −1)
canonical matricizations associated with TT rank are not
well-balanced enough, therefore still leaving room for further
development. Seeking to address this issue, we offer a novel
model that takes advantage of the low TR rank structure
by adopting a circular unfolding Z{n,l}, where l = (N/2)�
for generating balanced matrices. As such, it captures the
local correlation between floor (N/2) modes and the rest ceil
(N/2) modes. By the new surrogate, we reformulate our model
in (11) as follows:

min
Z

L∑
n=1

rank
(
Z{n,l}

) + μ

2

∥∥P ◦ Z − Dobs
∥∥2

F (25)

where L = N since this unfolding procedure produces N
matrices. Similarly, an equivalent optimization problem can
be derived

min
X,Y,Z

1

2

N∑
n=1

∥∥ XnYn − Z{n,l}
∥∥2

F
+ μ

2

∥∥P ◦ Z − Dobs
∥∥2

F

(26)

and the following updates are easily accessed:
Xk+1

n = Zk
{n,l}
(
Yk

n

)H
(27a)

Yk+1
n =

((
Xk+1

n

)H
Xk+1

n

)†(
Xk+1

n

)H
Zk

{n,l} (27b)

Zk+1 = (I − αP) ◦ C + αDobs. (27c)

We denote this new approach as PMF-TR, and Algorithm 2
presents the summarized pseudocode. The primary advantage
of this algorithm is that circular unfolding produces more
balanced matrices, which aids in the improvement of recovery
performance.

Algorithm 2 Low-Rank Tensor Completion by PMF-TR

1: Inputs: Dobs, P , μ, R1, . . . , RN

2: Initializations: Y0, Z0, k = 0
3: while the given stopping criterion is not satisfied do
4: for n = 1, . . . , N do
5: Unfolding Zk to get Zk{n,l}
6: Xk+1

n = Zk{n,l}(Yk
n)

H

7: Yk+1
n = ((Xk+1

n )H Xk+1
n )†(Xk+1

n )H Zk{n,l}
8: end for
9: C = 1

N

∑N
n=1 fold{n,l}(Xk+1

n Yk+1
n )

10: Zk+1 = (I − αP) ◦ C + αDobs

11: set k = k + 1
12: end while
13: Output: Zk+1

On closer inspection of PMF-TR, and taking into considera-
tion the fact that the observed seismic tensor Dobs has exactly
four dimensions (N = 4), we discover that Z{n,l} = ZT{n+l,l} .
In other words, the updating procedure in Algorithm 2 is
redundant for n = 3, 4. To efficiently address the seismic
reconstruction problem, we reduce half of the inner iterations
regarding updating these three subproblems in Algorithm 2,
and set n = 1, 2. In this particular case, the algorithm is
designated as PMF-TRH and the corresponding pseudocode
is presented in Algorithm 3. The only difference between
PMF-TRH and PMF-TR is that the overall unfolding numbers
of Dobs in PMF-TRH (n = 1, 2) are less than that in PMF-TR
(n = 1, 2, 3, 4).

Algorithm 3 Low-Rank Tensor Completion by PMF-TRH

1: Inputs: Dobs, P , μ, R1, R2

2: Initializations: Y0, Z0, k = 0
3: while the given stopping criterion is not satisfied do
4: for n = 1, 2 do
5: Unfolding Zk to get Zk{n,l}
6: Xk+1

n = Zk{n,l}(Yk
n)

H

7: Yk+1
n = ((Xk+1

n )H Xk+1
n )†(Xk+1

n )H Zk{n,l}
8: end for
9: C = 1

2

∑2
n=1 fold{n,l}(Xk+1

n Yk+1
n )

10: Zk+1 = (I − αP) ◦ C + αDobs

11: set k = k + 1
12: end while
13: Output: Zk+1

D. Accelerating the Proposed Methods With Sketching

The problem in (18) is indeed a low-rank matrix factor-
ization problem. Consequently, many off-the-shelf algorithms,
such as QR factorization and Cholesky decomposition, can
also be implemented to update X and Y. We use the alternative
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Fig. 3. Random sketching technique, using the mode-n unfolding of Z as
an illustration. This method enables an efficient solution to overdetermined
least-squares problems by means of a randomized column sampling technique.

least squares in (19) and (27) since it is straightforward
to implement and has high performance. In addition, recent
studies [69] have demonstrated that randomized methods can
accelerate this computation dramatically, which can be roughly
divided into two categories: random projection-based methods
and sampling-based methods. The former method projects
any unfolding data unfoldn(Z) or Zn into a considerably
lower dimensional subspace by multiplying a random matrix.
However, as a result of our test, this multiplication operation
is also expensive since our proposed methods entail massive
iterations. Moreover, constructing a random matrix for each
iteration necessitates a significant increase in computational
cost. The latter method performs a random sampling of certain
rows or columns from the given matrix Zn , thus compressing
Zn in this manner. Whether performing the sampling on the
rows or columns depends on the size of Zn ∈ R

Sn×Tn . If Sn ≤
Tn , solving Xn is an over-determined process and we execute
the sampling on the columns of Zn , and vice versa. Taking the
original PMF as an example, one sampling method, namely,
sketching, can be implemented by column slicing operations
indexed by some random numbers as outlined in Algorithm 4,
which has a considerable advantage over matrix multiplication
in terms of running time. See Fig. 3 for a graphical illustration.

Algorithm 4 Sketching Sampling Algorithm

1: Inputs: Zn ∈ R
Sn×Tn , Yn ∈ R

Rn×Tn , Rn

2: Outputs: Ẑn , Ŷn

3: Initializations: Sampling size SSn = 10Rn log10(Rn)
P(X = α) = 1

Tn
for α ∈ {1, 2, . . . , Tn}

4: for r = 1, 2, . . . , SSn do
5: Pick tr ∈ {1, 2, . . . , Tn} with P

6: Set Ẑn(:, r) = Zn(:, tr )
7: Set Ŷn(:, r) = Yn X(:, tr )
8: end for

We adopt the random sketching technique to reduce the
running time of the PMF-based methods. In the case of
the original PMF, the subproblem regarding solving X can
be reformulated as the following equation after applying a
sketching technique:

min
X

1

2

N∑
n=1

∥∥Xnsketch
(
Yk

n

)− sketch
(
Zk

(n)

)∥∥2
F

(28)

where the updating of X can be equivalently solved by
a random least-squares problem. As the size of the new

least-squares subproblem is shrunk significantly, the computa-
tional complexity of updating the factor matrix is also reduced.
We name this novel technique as PMF-sketch, and the entire
procedure is illustrated in Algorithm 5. Similarly, we can also
apply the sketching method to other PMF-based methods and
obtain PMF-TT-sketch, PSMF-sketch, PMF-TR-sketch, and
PMF-TRH-sketch. Note that sketching is used for updating
Y when Sn > Tn . In the following section of data examples,
we will investigate their performance in detail.

Algorithm 5 Randomized Low-Rank Tensor Completion by
PMF With Tucker Rank (PMF-Sketch)

1: Inputs: Dobs, P , μ, R1, . . . , RN

2: Initializations: Y0, Z0, k = 0
3: while the given stopping criterion is not satisfied do
4: for n = 1, . . . , N do
5: Unfolding Zk to get Zk

(n)

6: Yk+1
n = (Xk

n)
H Zk

(n)

7: Ẑk
(n), Ŷk+1

n = sketch(Zk
(n), Yk+1

n , Rn)

8: Xk+1
n = Ẑk

(n)(Ŷ
k+1
n )H (Ŷk+1

n (Ŷk+1
n )H )†

9: end for
10: C = 1

N

∑N
n=1 fold(n)(Xk+1

n Yk+1
n )

11: Zk+1 = (I − αP) ◦ C + αDobs

12: set k = k + 1
13: end while
14: Output: Zk+1

We should supplement that the column or row selection
procedure can be carried out using a variety of alternative
probability distributions, as well as with or without replace-
ment of data. Even though other distributions, such as leverage
scores [70], might get better results, we use the uniform
distribution here is because sampling other distributions needs
more expensive computation.

E. Computational Complexity of Algorithms

Given a tensor Z of order N , we assume I1 = · · · =
IN−1 = I and set R1 = · · · = RN−1 = R for the analysis of
complexity. The computational complexity of the PMF-based
methods is shown in Table I. Note that the complexity for
PSMF corresponds to N = 4 because it is not easy to
square the unfolding for other values of N . We found that
PMF-TRH presents the lowest complexity among the methods
when sketching is not adopted. Sketching further reduces
its computational complexity. Refer to Appendix A for the
detailed derivation of computational complexity.

IV. EXPERIMENTS

A. Noise-Free Data Test

We first generate a 5-D noise-free seismic dataset to evaluate
the computational efficiency and data reconstruction quality
of the above-mentioned approaches. As depicted in Fig. 4(a),
there are four curved events in this dataset, of which the size
is 256 × 20 × 20 × 10 × 10, comprising 20 traces in each
common midpoint (CMP) dimension, ten traces in each offset
dimension, and 256 time samples for each trace. A random

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on June 23,2022 at 03:10:51 UTC from IEEE Xplore.  Restrictions apply. 



5916317 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON

Fig. 4. (a) Slice view of noise-free synthetic complete data. (b) Decimated
data with a missing rate of 90%.

amount of the total traces, such as 10%, 30%, 50%, 70%,
and 90%, is removed from the ground-truth data to create
the incomplete data. Thereafter, the proposed methods and
the baseline methods, i.e., PMF and PSMF, are applied to
complete each 4-D frequency cube. We set the reconstruction
range of temporal frequencies to 1–70 Hz. Once all the
frequency cubes have been processed, we assemble them into
the 5-D tensor in order and then transform them into the
original temporal–space domain. To allow for quantitative
comparison, we introduce the reconstruction quality Q by

Q [dB] = 10 log10

( ∥∥Dtrue
∥∥2

F∥∥Dtrue − Drecon
∥∥2

F

)
(29)

where Dtrue and Drecon represent the ground truth and recon-
structed tensor in the time–spatial domain, respectively.

For noise-free testing, we set the same stop criteria for all
methods. Specifically, there are two conditions for stopping
the iteration: either it reaches a maximum iteration Kiter of
300 or the relative error is less than 10−4, where the relative
error is calculated by ((�P ◦ Zk+1 − Dobs�2

F )/(�Dobs�2
F )).

The reinsertion parameter α regulates how much the observed
data are reinserted into the final solution, and we set it to
one since the observed data are not contaminated by noise.
The last but most critical parameter pertains to the selection
of an optimal rank for each method. For simplicity, we set
R = R1 = · · · = Rmax, where Rmax denotes the total unfolding

Fig. 5. Phase transition plot for (a) PMF and (b) PMF-sketch. After imple-
menting the random sketching technique, PMF-sketch provides a substantially
wider range of R values for high Q reconstruction.

amount. For example, Rmax = RN in PMF, and Rmax = RN−1

in PMF-TT. Then, we traverse all ranks from 1 to 12 with
an increment of one to attain the optimal reconstruction
quality for each method, as illustrated in Table II, where
R = (R1, . . . , Rmax). As evident from green columns in the
table, R = 4 tends to occur the most frequently, and therefore
should be the optimal rank for most methods. Nevertheless,
our proposed sketch-based methods sometimes can take the
optimal rank R = 7, meaning that it has a higher R variance.
In addition, Fig. 5 also demonstrates that implementation of
the sketching technique broadens the optional range of R
that could produce high-Q reconstruction, especially for small
missing ratios. As a result, the sketching technique has the
advantage of making R selection more feasible.

Then, we investigate the Q values in the red columns.
On average, their reconstruction performance is similar since
they can all acquire the best Q value for most cases. A closer
inspection to 70% and 90% reveals that PMF-TRH performs
best under no sketching conditions. Surprisingly, PMF-TT
performs the worst, contrary to the findings in image recov-
ery where PMF-TT should perform better than PMF and
PSMF [71]. It is possible because the dimension of the
fourth-order tensor is not large enough to fully exploit the
advantages of TTs. In addition, we find that PSMF is still
superior to PMF, although not by as much as in the original
PSMF article [50]. This is most likely because the four spatial
dimensions in this dataset are of different sizes. What is
striking about Q values in this table is that almost every
method is improved using the sketching approach and achieves
a higher Q value. Specially, PSMF-sketch outperforms PSMF
by 15.15 dB at 90% decimation. In addition, PMF-TT-sketch
is also slightly superior to PSMF after the improvement
gained by sketching. Consequently, the second advantage of
the sketching technique is enhancing the reconstruction quality
for noise-free data.

If we now turn to computational time in the orange
columns, we can find that PMF has the longest run time,
while PMF-TRH has the shortest run time in general. There
are two possible explanations. In one regard, the unfolding
scheme in PMF needs permutations, and it alters the data
order in memory, therefore incurring additional costs. In con-
trast, PMF-TRH unfolds the tensor in a manner that only
requires a moderate reshaping of the data without resorting
the data in the computer memory. In another regard, PMF has
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TABLE II

EVALUATION OF DIFFERENT PMF-BASED RECONSTRUCTION METHODS ON NOISY DATA

Fig. 6. Analysis of the recovery performance of PMF-based reconstruction methods for one frequency at 20 Hz under the 50% missing ratio. (a) Convergency
versus iteration. (b) Convergency versus computational time. (c) Computational time versus iteration.

four unfoldings, whereas PMF-TRH unfolds the tensor only
twice per iteration. In other words, PMF-TRH achieves better
reconstruction performance with fewer unfoldings. In addition,
we discover that PMF-TT consumes less time compared with
PMF, despite having lower Q values. What can be clearly seen
is the dramatic decline in run time after applying the sketching
method. Although PMF-based methods are highly efficient,
sketching can further reduce the computational cost by 40% in
some instances and by more than 10% on average. Therefore,
the third merit of the sketching strategy is to improve the
efficiency of PMF-based methods.

To further explore the reason why sketching has higher Q
values and shorter calculation time, we select a frequency
cube at 20 Hz and repeat all methods 50 times on it with
their optimal ranks to plot Fig. 6. Looking at Fig. 6(a), the
convergence tendency of all methods is similar, where relative
errors are decreasing dramatically, indicating that all methods
are efficient. On closer examination of the amplified subfigure,
we note that PMF and PMF-TT require more iterations to

reach the stop criteria. This is one reason they need more
run time. Surprisingly, all horizontal positions of the asterisk
markers are in front of their corresponding circle markers
with the same color. These findings provide further evidence
that sketching reduces the calculation time partly through a
reduction in iteration numbers. Fig. 6(b) shows comparison
of the execution time before and after sketching. End makers
represent the average time taken to reach the stop criteria.
From the above markers, we can conclude that applying the
sketching takes less time to converge, which is consistent
with our observations in Table II. Finally, we compare the
calculation time of each iteration by measuring the slope of
lines in Fig. 6(c). The smaller the slope, the shorter the time
required for each iteration. It is evident that solid lines are
always located above the dashed lines of the same color. Con-
sequently, the sketching strategy accelerates the solution speed
of each iteration for the overdetermined least-squares problem
as we expect. Other than decreasing iterations, this provides
an additional explanation as to why the implementation of

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on June 23,2022 at 03:10:51 UTC from IEEE Xplore.  Restrictions apply. 



5916317 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 7. Recover the noise-free data with 90% missing using (a) PMF, (b) PMF-sketch, (c) PMF-TT, (d) PMF-TT-sketch, (e) PSMF, (f) PSMF-sketch, and
(g) PMF-TRH. (h)–(n) Corresponding reconstruction errors between (a)–(g) and complete data in Fig. 4(a), respectively. The data correspond to one slice of
a 5-D volume. Error amplitudes are amplified by 100 times for better comparison.

sketching can reduce the total time costs. In addition, it can be
observed that the slope of PMF-TT is not very large, indicating
that overmuch iteration numbers are the main reason for the
long run time of PMF-TT.

Finally, we visualize the reconstruction results of a 90% sub-
sampling slice shown in Fig. 4(b) for more detailed examina-
tion. The last three methods shown in Table II are omitted from
comparison because their performance is pretty much identical
to PFM-TRH and their differences are hard to discern. Overall,
it can be seen from Fig. 7(a)–(f) that all PMF-based methods
achieve excellent performance and almost entirely recover
the missing traces. To facilitate comparisons, we amplify the
reconstruction errors between the reconstructed results and the
true complete data by 100 times, as illustrated in Fig. 7(h)–(n ).
Without sketching, there are slight artifacts present in the error
slice of PMF, PMF-TT, and PSMF. However, these artifacts
appear much weaker after implementing the sketching method.
These results corroborate our earlier findings of the superiority
of the sketching technique. In addition, we can observe that
the recovered traces by PMF-TRH are completely accurate,
confirming that the proposed PMF-TRH is a promising alter-
native for seismic data reconstruction.

B. Noisy Data Test

We also evaluate the effectiveness of our proposed
algorithms when earlier 5-D synthetic data are pol-
luted by band-limited random noise, as plotted Fig. 8(a).

Fig. 8. (a) Slice view of noisy synthetic complete 5-D data. (b) Decimated
data with a missing rate of 90%.

The signal-to-noise ratio of the corrupted data is 1.0 dB. Ran-
domly removing 90% of the total traces from noisy data results
in noisy and incomplete data, as shown in Fig. 8(b). In line
with the previous noise-free experiment, we seek the best
performance of each method by searching all available para-
meters. Note that the relative error for noisy data is computed
in a different manner using ((�Zk+1 − Zk�2

F )/(�Zk�2
F )). The

final parameter selection is summarized in Table III. It is

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on June 23,2022 at 03:10:51 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: EFFICIENT TENSOR COMPLETION METHODS FOR 5-D SEISMIC DATA RECONSTRUCTION 5916317

Fig. 9. Recover the noisy data with 90% missing using (a) PMF, (b) PMF-sketch, (c) PMF-TT, (d) PMF-TT-sketch, (e) PSMF, (f) PSMF-sketch, and
(g) PMF-TR-sketch. (h)–(n) Corresponding reconstruction errors between (a)–(g) and complete data in Fig. 8(a), respectively. The data correspond to one
slice of a 5-D volume.

apparent from these quantitative comparisons that adopting
the sketching technique performs better in terms of both
the evaluation measure Q and computational efficiency. Even
without sketching, the proposed PMF-TRH methods can
more accurately recover the tensor with less consuming time.
PMF-TT performs worse than PMF but costs considerably
less time because it also avoids time-consuming permutations.
To further visually examine the performance, we display
the reconstruction results in Fig. 9. From the figure, the
superiority of the sketching method, both in the enhancement
of reconstructed events and in the reduction of signal leakage,
can be observed.

C. Real Field Data Example

Furthermore, we test the reliability of PMF-based recon-
struction methods using a land dataset acquired in Canada.
Fig. 10 presents the acquisition geometry. In the first step,
we bin the data into regular grids that have a 20×20 m2 CMP
area, a 400 m offset, and a 45◦ azimuth. Unlike synthetic tests,
we use the offset |h| and azimuth Az instead of hx and hy .
Accordingly, we denote the incomplete 5-D real seismic
dataset as Dobs(ω, x, y, |h|, Az), where |h| = (h2

x + h2
y)

1/2

and Az = arctan((hx/hy)). For any given bin, we average
the traces falling within it. After the binning process, there is
96.79% preservation of the original traces in the grid and the
binned data have 601 time samples, 38 CMP x points, 76 CMP
y points, 12 offsets, and eight azimuths. The fold map, which

TABLE III

EVALUATION OF DIFFERENT PMF-BASED RECONSTRUCTION

METHODS ON NOISY DATA

indicates the number of traces per CMP, is depicted in Fig. 11
with a maximum fold of 15. Not surprisingly, this field
example has a fairly large trace missing ratio of 94.39% since
the average fold is only 5.38.

The entire survey data are divided into 405 blocks, and each
block has a size of 100×20×20×12×8. Overlapping ratios are

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on June 23,2022 at 03:10:51 UTC from IEEE Xplore.  Restrictions apply. 



5916317 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 10. Schematic of the seismic acquisition geometry of the field 5-D data.

Fig. 11. Fold of coverage map for field 5-D data.

configured to 25% in time, CMP x , and CMP y dimensions.
In the offset and azimuth directions, no overlap is applied
since all bins in these two directions are completely occupied.
Then, PMF-based algorithms are implemented at frequencies
ranging from 1 to 65 Hz. By visually inspecting the quality
of reconstruction, we ultimately set the same parameters for
all methods: R = 5, α = 0.4, and Kiter = 300. All programs

Fig. 12. Calculation time comparison of different reconstruction methods.

are run with MATLAB on the same server, which is equipped
with 20 CPU cores of Intel(R) Xeon(R) CPU E5-2640 v4 at
2.40 GHz, 126 GB memory, and Ubuntu operating system.
Fig. 12 displays the computation time required for different
methods. It is evident that PMF-TT and PMF-TRH are the
two most efficient methods before implementing the sketching
approach. In addition, it is noteworthy in this figure that all
computation time steadily declines after the implementation of
sketching. These results are in accord with synthetic studies,
in which using the randomized technique can shorten the
computation time of the PMF-based reconstruction methods.

In the next step, we conduct the examination from the slice
perspective. The synthetic example demonstrated that all the
aforementioned methods are capable of delivering reconstruc-
tion results that are almost equally excellent. Accordingly,
we solely present the results based on the PMF-TRH-sketch
method since it is the most efficient method among the PMF-
based methods.

Fig. 13 shows CMP y sections of the 5-D volume with the
fixed CMP x (bin 4 and 60 m) and offset (bin 6 and 2000 m)
prior to reconstruction. We can see that the seismic section of
the original data in Fig. 13(a) is incomplete and contains con-
siderable noise, presenting a significant challenge to successful
reconstruction. By applying the PMF-TRH-sketch method, all
the missing traces are completely recovered, as illustrated
in Fig. 13(b), and these reflections are cleaner than those
observed before reconstruction. Moreover, we can recognize
that the continuity of seismic events is satisfactory since
there is no substantial divergence between the original and
reconstructed traces. Then, we examine CMP y slices of the
5-D volume with fixed offset (bin 6 and 2000 m) and azimuth
(bin 4◦ and −45◦) prior to reconstruction, as presented in
Fig. 14(a). A large gap in incomplete observation complicates
reconstruction. Fig. 14(b) provides the results obtained by
the PMF-TRH-sketch method. It is clear that most of the
missing data are accurately reconstructed, resulting in a much
more coherent spatial representation of the seismic waveforms.
Moreover, this technique succeeds in reconstructing the afore-
mentioned big gap.
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Fig. 13. Slice view of CMP y gather results (a) before and (b) after the reconstruction of the field data by assigning offset bin = 6 and CMP x number = 4.
Azimuth bin [1, 8] is equivalent to [−180◦, 135◦] with an increase of 45◦.

Fig. 14. Slice view of CMP y gather results (a) before and (b) after the reconstruction of the field data by assigning offset bin = 6 and azimuth bin = 4.

Fig. 15(a) illustrates the stacked data cube before interpola-
tion. From this figure, we can see that the original stacked

data have a particularly low Q value, resulting in many
reflections becoming obscured by noise. The stacked cube
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Fig. 15. Stacked results. (a) Before reconstruction. (b) After reconstruction
using the PMF-TRH-sketch method.

after reconstruction is displayed in Fig. 15(b). From the
comparison of the above two stacked results, the PMF-TRH-
sketch eliminates prestack random noise effectively and sig-
nificantly increases the signal energy. This result confirms the
effectiveness of the PMF-TRH-sketch method in recovering
noisy and irregularly sampled seismic data.

V. DISCUSSION

A. Rank Sensitivity Analysis

A priori knowledge of rank is required for rank-reduced
tensor completion methods. The desired rank R for optimally
reconstructing seismic data is often unknown. To simplify our
analysis, in previous examples, we assumed all the rank values
for TT and TR to be equal. In other words, R1 = · · · = RN−1

Fig. 16. Rank sensitivity analysis under the 90% decimation for
(a) PMF-TRH and PMF-TT when (b) R1 = R2, (c) R1 = R3, and (d) R2 =
R3. The colorbar is same as shown in Fig. 5.

for TT, R1 = · · · = RN for TR, and R1 = R2 for TRH. In this
section, we provide experiments that examined sensitivity to
choosing different ranks for each unfolding. We restrict the
analysis to PMF-TT and PMF-TRH.

This experiment follows the same settings as in
Section IV-A, except for the assumption that the multiranks
are identical. From Fig. 5, we observe that for moderate levels
of decimations (e.g., 50%), a wide range of ranks provides
accurate reconstructions; in contrast, for severe decimations
of the order of 70%–90%, a more precise knowledge of
the rank is needed. We also perform our experiment with a
90% decimation. From the PMF-TRH results in Fig. 16(a),
we observe that satisfactory results are obtained with R1 ≥1
and R2 ≥4. Therefore, the reconstruction results are more
sensitive to R2 than R1. Rank R2 corresponds to an unfolding
matrix of size 200 × 200, while R1 associates with an
unfolding of size 400×100. Therefore, it is likely that
the reconstruction results are more dependent on ranks
corresponding to unfolding matrices, which more closely
resemble square matrices. Similar conclusions can be drawn
from the PMF-TT results in Fig. 16(b)–(d), where acceptable
results require R2 ≥4 while merely demanding R1 ≥1 and
R3 ≥1. This conclusion is consistent with previous articles
stating that a well-balanced matricization scheme is vital
for tensor completion [50], [71]. In addition, we observe
that the globally optimal result is not far away from the
optimal result obtained by the same multirank. For instance,
the global optimal result for PMF-TT is R1 =3, R2 =4,
and R3 =3, which is slightly better than the result obtained
by R1 = R2 = R3 =4. Consequently, a practical method
to find globally optimal results can entail two steps: first,
search the suboptimal results with equal ranks; then, fine-
tune the rank along each dimension with a small range of
values.
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B. Convergence Analysis

Our algorithms mainly comprise two parts. One is the PMF
used to express the low rank of TT or TR decompositions,
whose convergence has been demonstrated in [49]. The other
one is the randomization method used to accelerate the com-
putation of the low-rank matrix factorization, whose error
bound has been derived in [72, Th. 4.10]. Following [69]
and [73], we set the sampling size to 10R log10 R, whereas
it lacks strict theoretical proof. Fig. 6 shows the convergence
for the proposed methods. We have not demonstrated their
convergence theoretically, but our experiments have served
to heuristically show convergence for the type of practical
problems studied in this article.

VI. CONCLUSION

Seismic reconstruction methods based on the TT rank
and TR rank are proposed in this article. As demonstrated
by synthetic experiments, both PMF-TT and PMF-TR can
reconstruct 5-D seismic data with great accuracy. PMF-TT
performs slightly worse than PMF in our datasets but requires
less computation time. PMF-TR performs moderately better
than PSMF but is more computationally intensive. After
decreasing the half iteration chain of PMF-TR, PMF-TRH can
achieve faster reconstruction without reducing the reconstruc-
tion quality. In addition, the randomized sketching technique
is beneficial to all PMF-based approaches. Following that,
we evaluate the performance of the most efficient method,
PMF-TRH-sketch, on a real dataset. The field data results
demonstrate that the PMF-TRH-sketch method not only suc-
cessfully recovers missing traces in extremely incomplete data
but also dramatically improves the quality of both prestack
data and poststack data. Note that our intention is not to
make comparisons among different PMF-based methods since
they are all highly effective. By expanding the PMF-based
reconstruction family, we aim to provide greater flexibility to
practical implementation.

APPENDIX A
COMPUTATIONAL COMPLEXITY CALCULATION

We take PMF-TT as an example to calculate the
computational complexity, but the same process can be
used for the other methods explored in this article. As seen
in (20) and (24), the updates of {Xk+1

n }n=1,...,N−1 and
C need a computational complexity of O((N−1)I N R).
In the update of Yk+1

n in (19b), the term ((Xk+1
n )H Xk+1

n )†

requires computational complexity of O(I n R2 + R3), and
the other term (Xk+1

n )H Zk[n] requires O(I N R). Accordingly,
the overall computational complexity of updating Yk+1

n can
be summarized as O(I N R + 2I n R2 + R3). In fact, the
low-rank nature of Z[n] = XnYn, where Xn ∈ R

I n×R and
Yn ∈ R

R×I N−n
, often satisfies that R ≤ min{I n, I N−n}. Hence,

2I n R2 + R3 ≤ I N R, and the overall computational complexity
of PMF-TT can be reduced to O(3(N−1)I N R). After
adopting the random sketching technique of a sampling size
10R log10 R, the sampling cost is O(10N R log10 R) and can
be ignored. The computational complexity of updating Yk+1

n
can be reduced to O(10I N−n R2 log10 R +20R3 log10 R + R3).

Similarly, since R ≤ min{I n, I N−n}, we can rewrite
it as O(10I N−n R2 log10 R). The overall computational
complexity of PMF-TT-sketch is O(2(N−1)I N R+
10[ ((2I (1 − I ( ((N−1))/ 2) �))/ 1−I )+I �(((N−1))/2)�]R2 log10 R)
when N is even or O(2(N−1)I N R+10[((2I (1 − I (((N−1))/2)))/
1−I )]R2 log10 R) when N is odd. When N ≥ 4, we often have
I (((N−1))/2) 	 I N and the leading order cost of PMF-TT-sketch
can be roughly estimated by O(2(N−1)I N R). In addition,
a larger I and a smaller R lead to a closer approach to this
value. Likewise, we can obtain the computational complexity
of other methods and summarize them in Table I.
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