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An Unsupervised Deep Learning Method for
Denoising Prestack Random Noise
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Abstract— Deep-learning-based methods have been success-
fully applied to seismic data random noise attenuation. Among
them, the supervised deep-learning-based methods dominate
the unsupervised ones. The supervised methods need accurate
noise-free data as training labels. However, the field seismic data
cannot meet this requirement. To circumvent it, some researchers
utilized realistic-looking synthetic data or denoised results via
conventional methods as labels. The former ones encounter the
problem of weak generalization ability because it requires the
same distribution of test and training data. The latter ones
encounter the issue of insufficient denoising ability because its
denoising ability is difficult to significantly exceed the conven-
tional methods which were used to generate labels. To avoid
preparing noise-free labels, we propose a novel deep learning
framework for attenuating random noise of prestack seismic data
in an unsupervised manner. The prestack seismic data, such as
common-reflection-point (CRP) gathers and common-midpoint
(CMP) gathers after normal moveout (NMO) correction, have
high self-similarity. It is because their events are coherent in the
time–space domain and approximately horizontal from shallow to
deep layers. The generator convolutional neural network (GCN)
first learns self-similar features before any learning. The useful
signals are more self-similar than random noise, which is inco-
herent and randomly distributed. Therefore, the GCN extracts
features of useful signals before random noise. We select the
specific training iteration and adopt the early stopping strategy to
suppress random noise. Both synthetic and field prestack seismic
data examples demonstrate the validity of our methods.

Index Terms— Attenuation, prestack seismic data, random
noise, unsupervised.

I. INTRODUCTION

THE attenuation of prestack random noise in seismic
processing is a classic but still not completely solved

problem. Generally, the methods for attenuating random noise
can be roughly divided into two categories, i.e., conventional
model-based optimization methods and discriminative learning
methods.
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The model-based methods use explicit prior knowledge
to formulate a model and solve the associated optimization
problems to calculate the denoised seismic data. They have
clear physical meaning and easy to generalize for handling
different denoising problems. According to different prior
knowledge, model-based methods can be roughly divided
into three categories. The first type is based on prediction
filtering [1], [2]. They utilize the prior assumption that seismic
reflections have lateral continuity to distinguish reflections of
interest from the background noise. The second is based on
the low-rank prior, which comprises low-rank factorization
[3]–[5], and nuclear norm minimization [6]. The third one
is based on sparse representation, which merely requires
that seismic data can be represented as a linear combina-
tion of several atoms from a dictionary [7]–[9]. The above
methods have been successfully applied in practice. How-
ever, they have some common shortcomings. On the one
hand, the hand-crafted priors need to be carefully designed,
otherwise the priors may not be strong enough so that
they cannot sufficiently distinguish some complicated struc-
tures of reflections from noise. On the other hand, most of
them are time-consuming in the process of model optimiza-
tion and require professional knowledge to realize parallel
computing.

On the contrary, discriminant learning methods, such as
deep learning, directly obtain prior knowledge from training
data through end-to-end learning. The learned priors free
us from the complex prior design. Deep learning is easy
to carry out parallel computing with deep learning frame-
works, which makes it widely used in the suppression of
random noise. The common methods are based on 2-D
network [10], and 3-D network [11], [12]. Although they
achieve satisfying denoising results, there are several problems
we are concerned about. The most crucial issue is that it
requires a lot of noise-free data as labels, which are not
always available for seismic field data. Besides, the generality
of well-trained networks is limited, which means that its
denoising ability may weaken when dealing with large-scale
seismic data.

Unsupervised deep learning methods have both merits of
model-based methods and discriminant learning methods.
They are label-free and have a strong generalization ability
with the high efficiency of parallel computing. Unsupervised
deep learning method has been successfully applied to attenu-
ate the noise of seismological data sets [13]. Zhang et al. [14]
chose cross-entropy as the cost function and achieved unsuper-
vised random noise suppression of seismic data. In this letter,
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we propose a new unsupervised denoising method for prestack
random noise. On the one hand, the events of common-
reflection-point (CRP) gathers and common-midpoint (CMP)
gathers after normal moveout (NMO) are coherent in the
time–space domain and approximately horizontal from shal-
low to deep layers. Therefore, they have high self-similarity.
On the other hand, the multiscale expression is benefi-
cial to the processing of seismic data [15]. Inspired by
Ulyanov et al. [16], We use a multiscale generator convolu-
tional neural network (GCN) to extract multiscale self-similar
features. The useful signals are more self-similar than random
noise. Therefore, useful signals are extracted before random
noise by the network. We select the network output of a
specific iteration in the training process as denoised useful
signals. In Section II, we introduce the model formulation,
network architecture, and model training. In Section III, we use
synthetic and field seismic data to prove the effectiveness of
our method. Finally, we conclude in Section IV.

II. METHOD

A. Model Formulation

The seismic data, denoted by x0, can be modeled as a
superposition of useful signals and random noise

x0 = x + n (1)

where x denotes the useful signals and n denotes random
noise. We use a GCN to parameterize the useful signals as
follows:

x = fθ (z) (2)

where θ denotes the network parameters comprising the
weights and bias, z is a random vector, and f represents
the nonlinear generator network which maps z to x. The
parameterization can be seen as the reconstruction of x.
Inserting (2) to (1) leads to

x0 = fθ (z) + n (3)

where θ and n are the unknown parameters. Then, the task of
random noise attenuation from the seismic data is equivalent
to finding the optimal network parameters θ∗ to minimize the
energy function

θ∗ = arg min
θ

E( fθ (z); x0). (4)

The energy function E( fθ (z); x0) used in this letter is the
following formulation:

E(fθ ( z); x0) = ‖ fθ (z) − x0‖2. (5)

A unique advantage is that only the raw seismic data are
employed, with no additional noise-free labels needed. Once
θ∗ is determined, we can obtain the recovered reflections
quickly from the output of GCN x∗ = fθ∗(z).

Fig. 1. Network architecture used in our method.

B. Network Architecture

The architecture of GCN is a U-Net type fully convolutional
network comprising three parts: five downsample blocks, two
skip blocks, and five upsample blocks. Each block consists
of several basic units, including convolutional layers, batch
normalization, downsampling layers, upsampling layers, and
activation function layers, as shown in Fig. 1. To compromise
calculation cost, the number of downsampling filters increases
from 8 to 128 with the increase of depth i . The upsampling
layer has a symmetrical output size. The downsampling blocks
and upsampling blocks at different network depths reduce
the dimensionality of the target seismic data by compressing
common features and discarding useless information. This
network architecture enables the GCN a multiscale self-similar
feature extraction ability at multiple scales. The useful signals
of seismic data have a multiscale feature in nature, and
many seismic processing methods benefit from it [15], [17].
Therefore, we can apply the above ability to extract useful
signals and denoise seismic data.

Also, we make several modifications based on the original
U-Net. First, to reduce checkerboard artifacts caused by the
upsample blocks, we substitute transposed convolution for
bi-linear interpolation. Second, we adopt a skipping block
strategy to avoid the gradient vanishing problem. Third, replac-
ing rectified linear unit (ReLU) with leaky ReLU to prevent
neuron annihilation.

C. Model Training

We parameterize the seismic data by the GCN in (2), which
imposes a constrain that the reconstructed seismic data must
be one possible solution described by the GCN. Equation (4)
can be solved by an l2-norm optimization problem under
this constraint. This problem is a nonconvex problem that
the only unknown variable is θ . We can treat this problem
as an unsupervised network training problem and apply the
adaptive moment estimation (ADAM) optimizer to iteratively
estimate a locally optimal θ∗. The network starts from a
random initialization of θ0 and an initialization of z filled
with uniform distribution. When training starts, the parame-
ters θn of each iteration are mapped to a network output
x′

n = fθn (z). As the training iteration increases, the energy
function in (5) gradually converges. As stated in Section II-B,
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Fig. 2. Energy curves for the reconstruction task using: seismic useful signals,
random noise, and noisy seismic data set.

the GCN prefers to extract self-similar features at multiple
scales. The useful signals are coherent in space, while random
noise is randomly distributed, which makes the useful signals
more self-similar than random noise. Due to the constrain of
GCN’s solution space, the useful signals with self-similarities
are more easily extracted by the network compared with
random noise. To prove it, we use the GCN to reconstruct
the noisy seismic data, random noise, and the useful signals,
respectively. The noisy seismic data are obtained by adding
the other two together. As shown in Fig. 2, if we want to
reconstruct useful signals, 1500 iterations is enough because
the GCN is easy to learn these self-similar features of useful
signals. However, if we want to reconstruct random noise,
more than 8000 iterations are needed because there are few
features of self-similarity, so the network can only memorize
it mechanically over and over again.

When we use the GCN to reconstruct raw seismic data,
the output of the network first reconstructs useful signals and
then starts to reconstruct random noise. In other words, there is
a series of consecutive iterations in which the network has fit
almost all the energy of useful signals, but only a few energy
of random noise. By selecting a specific iteration and adopting
an early stopping strategy, the network can filter out random
noise from the useful signals. Although we could get the best
results by a closer fine-tune of iterations, we found that a wide
range of iterations gives us acceptable results. This robustness
makes large-scale industrial applications accessible.

III. DATA EXAMPLES

A. Synthetic Data Example

We first evaluate the denoising performance on synthetic
data. Fig. 3(a) shows the useful signals composed of three
reflections modeled by hyperbolic events. The clean seismic
data contain 9 gathers with 40 traces each gather and the
spatial sampling interval is 40 m. Each trace has 500 time

Fig. 3. Denoising comparisons of synthetic seismic data. (a) Clean data set.
(b) Noisy data set (SNR = −3.01 dB). (c) Noisy data set after NMO. Denoised
results using (d) proposed method and (g) DDTF. Undoing NMO results of
(e) proposed method and (h) DDTF. Removed noise using (f) proposed method
and (i) DDTF.

TABLE I

SNR OF THE DENOISED RESULTS ON SYNTHETIC DATA

sampling points with 4 ms intervals. We add random noise to
the clean data and obtain the noisy data shown in Fig. 3(b)
with a signal-to-noise ratio (SNR) of −3.01 dB. We choose
data-driven tight frame (DDTF) [7] with patch size 20 as
the baseline method for comparison. The first row in Table I
illustrates the denoised results without NMO. The SNR of our
proposed method (11.68 dB) is lower than DDTF (12.77 dB).
This is because these three events have three different veloc-
ities, which leads to different curvature of hyperbola and
reduces the self-similarity. To further improve the denoising
performance, we apply NMO to flatten useful signals. The flat-
tened events, as shown in Fig. 3(c) has higher self-similarities.
Fig. 3(d) and (g) display the corresponding denoising results
of flattened data. After undoing NMO, the denoising results
of both our methods (18.47 dB) in Fig. 3(e) and DDTF
(16.95 dB) in Fig. 3(h) are improved compared with not
using NMO. We see that our method can properly fit stretches
generated by NMO and obtain the highest SNR. However,
DDTF is hard to avoid producing weak artifacts after undoing
NMO, as shown in the black box of Fig. 3(h), while our
method can handle it well. Fig. 3(f) and (i) illustrate the
corresponding noise removed by the two methods, where
coherent useful signals can hardly be seen. The above results
prove that the combination of NMO and data-driven denoising
method we proposed is effective.
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Fig. 4. Denoising comparisons of field seismic data. (a) Noisy data set.
Denoised results using (b) DDTF and (c) proposed method. Removed noise
using (d) DDTF and (e) proposed method.

B. Field Data Example

Then we apply our method to prestack field seismic data.
The CRP gather shown in Fig. 4(a) consists of 200 traces
with 2 ms time sampling interval. The useful signals are
contaminated by a large amount of background noise, causing
some weak signals to be blurred. Meanwhile, we note that the
strongly reflected events are approximately horizontal, which
both DDTF and our method are good at dealing with, as illus-
trated in the synthetic examples. Fig. 4(b) shows the denoised
result of DDTF, and we can see that there is still some residual
noise. Then we use the GCN to extract self-similar features
from this raw seismic data. After 1500 iterations, we obtain the
denoised result of the network, as shown in Fig. 4(c). It can be
seen that there is no significant residual noise, and the events
are clearer than the previous ones. Moreover, some coherent
noise is also removed by our method without missing details
of useful signals. In the corresponding removed noise sections
of DDTF shown in Fig. 4(d), we find some leakage of useful
signals. However, as shown in Fig. 4(e), we can hardly find
obvious continuous events except for some unusual amplitude
points, which indicate that our method does not seriously
damage the useful signals during the denoising process. The
computing time of our method (79.19 s) is longer than DDTF
(51.30 s), but it is acceptable because our denoising results
are better and parameters are easier to choose.

For a clearer comparison, we enlarge two areas indicated
by the yellow box and red box in Fig. 4(a). The shallow-layer
data of 0.5–2 s is seriously disturbed by random noise,
which almost completely masks the useful signals, as shown
in Fig. 5(a). The denoised results of DDTF in Fig. 5(b) still
have noise residues. However, no significant random noise can
be observed in the denoised results of our method shown
in Fig. 5(c). It can also be seen from the noise section

Fig. 5. Denoising comparisons of the enlarged area of the yellow box
in Fig. 4. (a) Noisy data set. Denoised results using (b) DDTF and (c) proposed
method. Removed noise using (d) DDTF and (e) proposed method.

Fig. 6. Denoising comparisons of the enlarged area of the red box in Fig. 4.
(a) Noisy data set. Denoised results using (b) DDTF and (c) proposed method.
Removed noise using (d) DDTF and (e) proposed method.

in Fig. 5(e) that there is no obvious signal leakage. We can
draw the same conclusion from the denoising results of 2–5 s
in Fig. 6. In summary, our proposed method can effectively
attenuate the noise under the premise of adequately preserving
the signals.

We further explore the denoising performance on the mul-
tichannel normalized amplitude spectrum. As we all know,
random noise has mainly high-frequency energy. We see that
the high-frequency amplitude spectrum, such as higher than
60 Hz, denoised by the network is lower than that by DDTF,
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Fig. 7. Multichannel normalized amplitude spectrum of (a) denoised data,
(b) removed noise, and (c) enlarged area of the red circle in (a).

as shown in Fig. 7(a). It means that the network suppresses
more noise energy. We can also get the same conclusion from
the amplitude spectrum of removed noise shown in Fig. 7(b).
For a clearer comparison, Fig. 7(c) displays the enlarged area
indicated by the red circle in Fig. 7(a). The denoising result
of the network has lower energy at high frequencies. We can
conclude that our method has higher fidelity and stronger noise
suppression ability compared with DDTF.

IV. CONCLUSION

We propose an unsupervised method based on deep learning
for random noise attenuation without requiring high-quality
training labels. We use a GCN to reconstruct the raw seismic
data. The network has a strong multiscale self-similarities
feature extraction capability to recover the useful signals,
but it is challenging to recover random noise. We can get
the denoised useful signals by selecting a fixed iteration.
Both synthetic and field data are utilized to demonstrate the
effectiveness of the presented method. The proposed method

causes less damage to the useful signals while effectively
suppressing random noise. The powerful self-similar features
extraction ability gives us great hope in other prestack coherent
noise suppression tasks for future research.
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